Quantcast
Channel: Uncategorized – New Drug Approvals
Viewing all 678 articles
Browse latest View live

Clotrimazole

$
0
0

Clotrimazole.svg

Clotrimazole

  • Molecular FormulaC22H17ClN2
  • Average mass344.837 Da
1-((2-Chlorophenyl)diphenylmethyl)-1H-imidazole (9CI)
1-(o-Chloro-a,a-diphenylbenzyl)imidazole
1-[(2-Chlorophenyl)(diphenyl)methyl]-1H-imidazole
1-[(o-Chlorophenyl)diphenylmethyl]imidazole
1-[a-(2-Chlorophenyl)benzhydryl]imidazole
1H-Imidazole, 1-[(2-chlorophenyl)diphenylmethyl]-
1H-Imidazole, 1-[(2-chlorophenyl)-diphenylmethyl]
23593-75-1 [RN]
245-764-8 [EINECS]
2912
Bis-fenil-(2-clorofenil)-1-imidazolil-metano [Italian]
Bisphenyl-(2-chlorphenyl)-1-imidazolyl-methan [German]
Canesten [Trade name]
Canifug [Trade name]
Clotrimazole [BAN] [INN] [JAN] [USAN] [Wiki]
Clotrimazolum [Latin]
Empecid [Trade name]
Fungicip [Trade name]
G07GZ97H65
Gyne-Lotrimin [Trade name]
Imidazole, 1- (o-chloro-α,α-diphenylbenzyl)-
Lotrimin [Trade name]
Mono-baycuten [Trade name]
Mycelex [Trade name]
Mycelex G [Trade name]
Mycosporin [Trade name]
Pedisafe [Trade name]
Rimazole [Trade name]
Tibatin [Trade name]
Trimysten [Trade name]
UNII-G07GZ97H65
Clotrimaderm
Clotrimazole
Title: Clotrimazole
CAS Registry Number: 23593-75-1
CAS Name: 1-[(2-Chlorophenyl)diphenylmethyl]-1H-imidazole
Additional Names: 1-(o-chloro-a,a-diphenylbenzyl)imidazole; 1-[a-(2-chlorophenyl)benzhydryl]imidazole; 1-[(o-chlorophenyl)diphenylmethyl]imidazole; diphenyl-(2-chlorophenyl)-1-imidazolylmethane; 1-(o-chlorotrityl)imidazole
Manufacturers’ Codes: FB-5097; Bay b 5097
Trademarks: Canesten (Bayer); Canifug (Wolff); Empecid (Bayer-Takeda); Gyne-Lotrimin (Schering-Plough); Lotrimin (Schering-Plough); Mono-Baycuten; Mycelex-G (Miles); Mycofug (Hermal); Mycosporin (Bayer); Pedisafe (Sagitta); Rimazole (Cheil Sugar); Tibatin (Dak); Trimysten
Molecular Formula: C22H17ClN2
Molecular Weight: 344.84
Percent Composition: C 76.63%, H 4.97%, Cl 10.28%, N 8.12%
Literature References: Prepn: K. H. Buechel et al., ZA 6805392eidem, US 3705172 (1969, 1972 both to Bayer). Pharmacology: Plempel et al., Antimicrob. Agents Chemother. 1969, 271; eidem, Dtsch. Med. Wochenschr. 94, 1356 (1969). Clinical findings: Oberste-Lehn et al., ibid. 1365. Series of articles on prepn, toxicology, pharmacokinetics, clinical studies: Arzneim.-Forsch. 22,1260-1272, 1276-1299 (1972). Toxicity: D. Tettenborn, ibid. 1276. Comprehensive description: J. G. Hoogerheide, B. E. Wyka, Anal. Profiles Drug Subs. 11, 225-255 (1982).
Properties: Crystals, mp 147-149°. A weak base, slightly sol in water, benzene, toluene; sol in acetone, chloroform, ethyl acetate, DMF. Hydrolyzes rapidly upon heating in aq acids. LD50 in male mice, rats (mg/kg): 923, 708 orally (Tettenborn).
Melting point: mp 147-149°
Toxicity data: LD50 in male mice, rats (mg/kg): 923, 708 orally (Tettenborn)
Derivative Type: Hydrochloride
Molecular Formula: C22H17ClN2.HCl
Molecular Weight: 381.30
Percent Composition: C 69.30%, H 4.76%, Cl 18.60%, N 7.35%
Properties: mp 159°.
Melting point: mp 159°
Therap-Cat: Antifungal.
Therap-Cat-Vet: Antifungal.
Keywords: Antifungal (Synthetic); Imidazoles.

Clotrimazole, sold under the brand name Canesten among others, is an antifungal medication.[1] It is used to treat vaginal yeast infectionsoral thrushdiaper rashpityriasis versicolor, and types of ringworm including athlete’s foot and jock itch.[1] It can be taken by mouth or applied as a cream to the skin or in the vagina.[1]

Common side effects when taken by mouth include nausea and itchiness.[1] When applied to the skin common side effects include redness and burning.[1] In pregnancy, use on the skin or in the vagina is believed to be safe.[1] There is no evidence of harm when used by mouth during pregnancy but this has been less well studied.[1] When used by mouth, greater care should be taken in those with liver problems.[1] It is in the azole class of medications and works by disrupting the cell membrane.[1]

Clotrimazole was discovered in 1969.[2] It is on the World Health Organization’s List of Essential Medicines, the most effective and safe medicines needed in a health system.[3] It is available as a generic medication.[1] The wholesale cost in the developing world as of 2014 is 0.20–0.86 USD per 20 gram tube of cream.[4] In the United States a course of treatment typically costs less than 25 USD.[5]

Medical uses

It is commonly available without a prescription in various dosage forms, such as a cream, vaginal tablet, or as a prescription troche or throat lozenge (prescription only). Topically, clotrimazole is used for vulvovaginal candidiasis (yeast infection) or yeast infections of the skin. For vulvovaginal candidiasis (yeast infection), clotrimazole tablets and creams are inserted into the vagina. Troche or throat lozenge preparations are used for oropharyngeal candidiasis (oral thrush) or prophylaxis against oral thrush in neutropenic patients.

Clotrimazole is usually used 5 times daily for 14 days for oral thrush, twice daily for 2 to 8 weeks for skin infections, and once daily for 3 or 7 days for vaginal infections.[6]

Clotrimazole may be compounded with a glucocorticoid, such as betamethasone, in a topical cream for the treatment of tinea corporis (ringworm)tinea cruris (jock itch) and tinea pedis (athlete’s foot). Although FDA approved, clotrimazole-betamethasone combination cream is not the preferred treatment for dermatophyte infections due to increased side effects from the topical glucocorticoid. Although temporary relief and partial suppression of symptoms may be observed with the combination therapy, glucocorticoids can elicit an immunosuppressive response and rebound effect that results in more severe infection typically requiring systemic antifungal agents to treat the disease. Combination creams are best avoided in order to improve treatment outcome, reduce the possibility of skin atrophy associated with prolonged topical glucocorticoid use, and to limit the cost of treatment. It can be effective in treating chronic paronychia. The preferred treatment of tinea infections is therefore with clotrimazole monotherapy.[7]

Topical and oral clotrimazole can be used in both adults and children.

Additionally, clotrimazole may be used to treat the sickling of cells (related to sickle cell anemia).[8][9]

Pregnancy

Small amounts of clotrimazole may be absorbed systemically following topical and vaginal administration. However, this may still be used to treat yeast infections in pregnant women.[10]

Side effects

Side effects of the oral formulation include itching, nausea, and vomiting. >10% of patients using the oral formulation may have abnormal liver function tests. Side effects include rash, hives, blisters, burning, itching, peeling, redness, swelling, pain or other signs of skin irritation.[1] For this reason, liver function tests should be monitored periodically when taking the oral clotrimazole (troche). When used to treat vulvovaginal candidiasis (yeast infection), <10% of patient have vulvar or vaginal burning sensation. <1% of patients have the following side effects: Burning or itching of penis of sexual partner; polyuria; vulvar itching, soreness, edema, or discharge [6][11][12]

Clotrimazole creams and suppositories contain oil which may weaken latex condoms and diaphragms.[10]

Drug interactions

There are no known significant drug interactions with topical clotrimazole. However, with oral (troche) clotrimazole, there are multiple interactions as the medication is a CYP450 enzyme inhibitor, primarily CYP3A4. Thus, any medication that is metabolized by the CYP3A4 enzyme will potentially have elevated levels when oral clotrimazole is used. The prescribing physician should be aware of any medication the patient is taking prior to starting oral clotrimazole. Certain medications should not be taken with oral clotrimazole.[11]

Mechanism of action

Clotrimazole works by inhibiting the growth of individual Candida or fungal cells by altering the permeability of the fungal cell wall. It binds to phospholipids in the cell membrane and inhibits the biosynthesis of ergosterol and other sterols required for cell membrane production.[12][11] Clotrimazole may be fungistatic (slow fungal growth) or fungicidal (result in fungal cell death).[1]

Society and culture

Clotrimazole (Canesten) antifungal cream

It is available as a generic medication.[1] The wholesale cost in the developing world as of 2014 is 0.20–0.86 USD per 20gm tube of cream.[4]In the United States a course of treatment typically costs less than 25 USD.[5] In 2016 Canesten was one of the biggest selling branded over-the-counter medications sold in Great Britain, with sales of £39.2 million.[13]

Image result for clotrimazole synthesis

syn

 Image result for clotrimazole synthesis
str3
d (4) as a white crystal (yield 91%). mp 130- 133 0 C; Rf = 0.37; IR (neat) νmax/cm-1 3064, 1489, 1443, 1210, 750; 1 H NMR (300 MHz, CDCl3) δ (ppm): 7.48 (s, 1H), 7.41-7.44 (m 1H), 7.32-7.37 (m, 7H), 7.26-7.29 (m, 1H), 7.19-7.23 (m, 4H), 7.07 (s, 1H), 6.92 (dd, 1H, J = 1.5, 6.3 Hz), 6.76 (s, 1H); 13C NMR (100 MHz, CDCl3) δ (ppm): 151.1, 150.5, 148.9, 144.5, 140.3, 138.0, 137.7, 137.3, 135.5, 135.2, 135.1, 133.8, 127.0, 68.9; m/z calcd for C19H14Cl [M-Imid]+ 277.0784, found 277.0780.
Clip

CLIP

Open Babel bond-line chemical structure with annotated hydrogens.<br>Click to toggle size.

Fig 4. Open Babel bond-line chemical structure with annotated hydrogens.
Click to toggle size.

Spectrum Plot

<sup>1</sup>H NMR spectrum of C<sub>22</sub>H<sub>17</sub>Cl<sub></sub>N<sub>2</sub> in CDCL3 at 400 MHz.<br>Click to toggle size.

Fig 5. 1H NMR spectrum of C22H17ClN2 in CDCL3 at 400 MHz.

Image

Figure 7. 2D 13 C13 C refocused INADEQUATE spectrum of clotrimazole showing intramolecular contacts among 13 C resonances as marked in the molecular structure on the right. The full spectrum is included in the Figure S4. The 2D spectrum was acquired in 17 hr at 106 K on 400 MHz, 384 scans per increment, 2 s recycle delay and 80 t 1 increments of a 27.7 ?s.

2D 13C-13C refocused INADEQUATE spectrum of clotrimazole showing intramolecular contacts among 13C resonances as marked in the molecular structure on the right. The 2D spectrum was acquired in 17 hr at 106 K on 400 MHz.

PATENT

https://patents.google.com/patent/CN105566156A/en

The object of the present invention is to provide a method for synthesizing a pharmaceutical Clotrimazole intermediate o-chlorobenzonitrile, comprising the steps of:

[0004] (i) in a reaction container equipped with a stirrer, a thermometer, a distillation apparatus, was added o-chlorobenzyl alcohol (2) 3. lmol, aniline (3) 3.6-3 · 9mol, nitromethane burning 310ml, chloro cuprous 1 · 56mol, hook are mixed, controlling the stirring speed 110-160rpm, the solution temperature increased to 110-115 ° C, 3-5h the reaction, the solution temperature increased to 130-135 ° C, the reaction 2-3h, solution temperature increased to 190-195 ° C, the reaction 90-120min, reducing the solution temperature to 15-20 ° C, was added 700 ml of saline solution, sodium bisulfite solution, 130ml, distilled under reduced pressure to collect 130-135 ° C fraction , washed with triethylamine in toluene and recrystallized to give crystals of o-chlorobenzonitrile (1).

[0005] wherein the mass fraction of nitromethane according to step (i) is 60-65%, of the salt solution in step (i) is ammonium nitrate, potassium iodide to any one of the steps of (i) mass fraction of sodium hydrogen sulfite solution was 40-45%, which pressure in the vacuum distillation of step (i) is 1.6-1.7kPa, triethylamine mass fraction of said step (i) is 70-75%, step (i) in toluene of the mass fraction of 90-95%. Throughout the reaction using the following reaction formula:

[0006

[0007 “not as good as Wu Ming 1 point Shi Bian: J Cheng less

Figure CN105566156AD00041

A slave I anti Day “* 1, section A, J array low reaction temperature and reaction time, the reaction yield improved.

Detailed ways

[0008] The following examples with reference to specific embodiments of the present invention is further described:

Clotrimazole synthesis kinds drug intermediates of o-chlorobenzonitrile – [0009]

[0010] Example 1:

[0011] In a reaction vessel fitted with a stirrer, a thermometer, a distillation apparatus, was added o-chlorobenzyl alcohol (2) 3. Lmol, aniline (3) 3.6111〇1, mass fraction of 60% nitromethane 3,101,111 chloride cuprous 1.56111 〇1, mixing, stirring speed control lOrpm 1, the solution temperature increased to 110 ° C, the reaction 3h, the solution temperature increased to 130 ° C, the reaction 2h, the solution temperature is raised to 190 ° (:, reaction 9011 ^ 11, reducing the solution temperature to 15 ° (:, 7,001,111 ammonium nitrate solution was added, the mass fraction of 40% sodium bisulfite solution was 130ml, 1.6kPa vacuum distillation, collecting the fraction 130-135 ° C, mass fraction of 70 washed% triethylamine, 90% toluene to a mass fraction of recrystallized to give crystals of o-chlorobenzonitrile 308.02g, yield 72%.

[0012] Example 2:

[0013] In a reaction vessel fitted with a stirrer, a thermometer, a distillation apparatus, was added o-chlorobenzyl alcohol (2) 3. Lmol, aniline (3) 3.7111〇1, mass fraction of 62% nitromethane 31〇1111, 1.56111〇1 cuprous chloride, mixed, controlling the stirring speed of 130 rpm, the temperature was raised to 112 ° C, the reaction 4h, the solution temperature increased to 132 ° C, the reaction 2h, the solution temperature increased to 192 ° C, the reaction llOmin, reducing the solution temperature to 17 ° C, 700 ml of a solution of potassium iodide was added, the mass fraction of 42% sodium bisulfite solution 130ml, 1.65kPa vacuum distillation, collecting the fraction 130-135 ° C, mass fraction of 72% triethylamine washed, recrystallized from toluene to 92% mass fraction, to obtain crystals of o-chlorobenzonitrile 337.96g, yield 79%.

[0014] Example 3:

[0015] In a reaction vessel fitted with a stirrer, a thermometer, a distillation apparatus, was added o-chlorobenzyl alcohol (2) 3. Lmol, aniline (3) 3.9111〇1, mass fraction of 65% nitromethane 31〇1111, 1.56111 〇1 cuprous chloride, mixed, controlling stirring speed 160 rpm, temperature was raised to 115 ° C, the reaction 5h, the solution temperature increased to 135 ° C, the reaction 3h, the solution temperature increased to 195 ° C, the reaction 120min, reducing the solution temperature to 20 ° C, was added 700 ml of a solution of ammonium nitrate, 45% mass fraction of sodium bisulfite solution was 130ml, 1.7kPa vacuum distillation, collecting the fraction 130-135 ° C, mass fraction of 75% triacetyl amine scrubbing, 95%, recrystallized from toluene to a mass fraction to obtain crystals of o-chlorobenzonitrile 350.80g, yield 82%.

PATENT

https://patents.google.com/patent/US5091540A/en

Clotrimazole, i.e. 1-(o.Cl-α,α-diphenylbenzyl)imidazole, of formula: ##STR1## is a known antimycotic for human use, and a fungicide useful against plant pathogenic fungi.

Methods for its preparation are described in various patents. In particular, U.S. Pat. No. 3,929,820 describes a process starting from chlorophenyldiphenyl methylchloride and imidazole in the presence of a neutralizing agent, such as triethylamine, in a polar organic solvent. The process is strictly limited by the use, as the medium for the reaction in question, of a solvent falling within the given definition, i.e. having a dielectric constant of at least 4.5 and preferably between 15 and 50. In all the examples of the implementation of the process according to the patent in question, acetonitrile (D=37.5) is used as solvent.

EXAMPLE

900 g of benzene and 117.5 g of aluminium chloride are placed in a 2 liter flask fitted with a reflux condenser, stirrer and drying tube.

The mixture is cooled to 0° C. and a solution of 150 g of o.chlorobenzotrichloride in 150 g of benzene is added while maintaining a temperature not exceeding 15° C. The mixture is heated carefully under reflux for 4 hours. HCl is evolved.

The reaction mixture is then cooled to ambient temperature and slowly poured into 300 g of concentrated hydrochloric acid and 800 g of ice, so as not to exceed 25° C. The aqueous layer is then separated and discarded.

The benzene solution is washed with a solution of 230 g of sodium chloride in 800 g of water. The benzene phase is separated and dried over anhydrous sodium sulphate for 1 hour, and then filtered.

45 g of imidazole in 70 g of triethylamine are added to the filtrate and the mixture heated for 3 hours at 45°-50° C. It is then cooled to ambient temperature and 500 g of water are added while stirring. The aqueous layer is separated and discarded, and the benzene phase washed with 200 g of water. The benzene layer is separated and evaporated to dryness under vacuum.

The residue is dissolved in 250 g of ethyl acetate while stirring. 250 g of water are added and the solution titrated to calculate the exact quantity of nitric acid to add.

The solution is cooled to 15° C. and the calculated nitric acid quantity is quickly added. Stirring is halted when precipitation commences, and the system left until precipitation is complete.

The product is centrifuged and washed with 300 g of ethyl acetate and then with 300 g of water.

The moist product is placed into the reaction flask and 300 g of water, 450 g of methylene chloride, 5 g of triethylamine and 110 g of 30% sodium hydroxide are added. The mixture is stirred until a solution forms and the solution then left until the phases separate.

The aqueous phase is washed with 100 g of methylene chloride, and the pooled organic phases are washed twice with 200 g of water each time.

The solution in methylene chloride is treated with YMS decolorizing carbon and filtered, the filter then being washed with methylene chloride which si recovered by distillation. The residue is taken up in 100 g of acetone and redistilled to completely eliminate the methylene chloride.

The residue is taken up in 900 g of acetone and heated to 50° C. to obtain a complete solution. YMS decolorizing carbon and triethylamine are added, the mixture filtered and washed with acetone. Part of the acetone is then removed by distillation, reducing the volume to about 500 c.c. The mixture is cooled to 0° C. and, after five hours, the product is centrifuged and washed with 100 g of acetone. It is dried at 60° C., to obtain 150 g of final product.

References

  1. Jump up to:a b c d e f g h i j k l m American Society of Health-System Pharmacists (8 February 2016). “Clotrimazole Monograph for Professionals”http://www.drugs.comArchived from the original on 28 October 2016. Retrieved 28 October 2016.
  2. ^ Walker, S. R. (2012). Trends and Changes in Drug Research and Development. Springer Science & Business Media. p. 109. ISBN 9789400926592Archived from the original on 2016-09-14.
  3. ^ “WHO Model List of Essential Medicines (19th List)” (PDF)World Health Organization. April 2015. Archived (PDF) from the original on 13 December 2016. Retrieved 8 December 2016.
  4. Jump up to:a b “Clotrimazole”International Drug Price Indicator GuideArchived from the original on 10 May 2017. Retrieved 28 October 2016.
  5. Jump up to:a b Tarascon Pharmacopoeia 2016 Professional Desk Reference Edition. Jones & Bartlett Publishers. 2016. p. 176. ISBN 9781284095302Archived from the original on 2016-10-28.
  6. Jump up to:a b “Clotrimazole: MedlinePlus Drug Information”. The American Society of Health-System Pharmacists, Inc. Archived from the original on 18 April 2014. Retrieved 17 April2014.
  7. ^ Moriarty, B; Hay, R; Morris-Jones, R (10 July 2012). “The diagnosis and management of tinea”. BMJ (Clinical research ed.)345: e4380. doi:10.1136/bmj.e4380PMID 22782730.
  8. ^ Marieb & Hoehn, (2010). Human Anatomy and Physiology, p. 643. Toronto: Pearson
  9. ^ Rodgers, Griffin. “Hydroxyurea and other disease-modifying therapies in sickle cell disease”. UpToDate. Archived from the original on 15 April 2014. Retrieved 14 April2014.
  10. Jump up to:a b “Diseases Characterized by Vaginal Discharge”. CDC. Archived from the original on 28 April 2014. Retrieved 17 April 2014.
  11. Jump up to:a b c “Clotrimazole”. DrugBank. Archived from the original on 17 April 2014. Retrieved 17 April 2014.
  12. Jump up to:a b “Clotrimazole (Oral)”. Lexicomp Online. Archived from the original on 23 January 2015. Retrieved 17 April 2014.
  13. ^ “A breakdown of the over-the-counter medicines market in Britain in 2016”. Pharmaceutical Journal. 28 April 2017. Retrieved 29 May 2017.

/////////////clotrimazole

READ

ANTHONY MELVIN CRASTO

https://newdrugapprovals.org/

NDA

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO …..FOR BLOG HOME CLICK HERE

Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Facebook FACEBOOK

Join me on twitterFollow amcrasto on Twitter
Join me on google plus Googleplus

 amcrasto@gmail.com

CALL +919323115463  INDIA

//////////////


Diclofenac Sodium

$
0
0

Diclofenac sodium.png

Diclofenac Sodium

15307-79-6; Sodium diclofenac; Diclofenac sodium salt; Voltaren; Solaraze

Molecular Formula: C14H10Cl2NNaO2
Molecular Weight: 318.129 g/mol

Diclofenac, sold under the trade names Voltaren among others, is a nonsteroidal anti-inflammatory drug (NSAID) used to treat pain and inflammatory diseases such as gout.[3] It is taken by mouth or applied to the skin.[3] Improvements in pain typically occur within half an hour and last for as much as eight hours.[3] It is also available in combination with misoprostol in an effort to decrease stomach problems.[4]

Common side effects include abdominal paingastrointestinal bleeding, nausea, dizziness, headache, and swelling.[3] Serious side effects may include heart diseasestrokekidney problems, and stomach ulceration.[4][3] Use is not recommended in the third trimester of pregnancy.[3] It is likely safe during breastfeeding.[4] It is believed to work by decreasing the production of prostaglandin.[5] It blocks both cycloxygenase-1 (COX-1) and cycloxygenase-2 (COX-2).[3]

Diclofenac was patented in 1965 by Ciba-Geigy and came into medical use in the United States in 1988.[3][6] It is available as a generic medication.[3] In the United States the wholesale cost per dose is less than US$0.15 as of 2018.[7] In 2016 it was the 78th most prescribed medication in the United States with more than 9 million prescriptions.[8] It is available as both a sodium and a potassium salt.[4]

Medical uses

Diclofenac is used to treat pain, inflammatory disorders, and dysmenorrhea.[9]

Pain

Inflammatory disorders may include musculoskeletal complaints, especially arthritisrheumatoid arthritispolymyositisdermatomyositisosteoarthritis, dental pain, temporomandibular joint (TMJ) pain, spondylarthritisankylosing spondylitisgout attacks,[10] and pain management in cases of kidney stones and gallstones. An additional indication is the treatment of acute migraines.[11] Diclofenac is used commonly to treat mild to moderate postoperative or post-traumatic pain, in particular when inflammation is also present,[10] and is effective against menstrual pain and endometriosis.

Diclofenac is also available in topical forms and has been found to be useful for osteoarthritis but not other types of long-term musculoskeletal pain.[12]

It may also help with actinic keratosis, and acute pain caused by minor strains, sprains, and contusions (bruises).[13]

In many countries,[14] eye drops are sold to treat acute and chronic nonbacterial inflammation of the anterior part of the eyes (e.g., postoperative states). Diclofenac eye drops have also been used to manage pain for traumatic corneal abrasion.[15]

Diclofenac is often used to treat chronic pain associated with cancer, in particular if inflammation is also present (Step I of the World Health Organization (WHO) scheme for treatment of chronic pain).[16] Diclofenac can be combined with opioids if needed such as a fixed combination of diclofenac and codeine.

Contraindications

Adverse effects

Diclofenac consumption has been associated with significantly increased vascular and coronary risk in a study including coxib, diclofenac, ibuprofen and naproxen.[18] Upper gastrointestinal complications were also reported.[18] Major adverse cardiovascular events (MACE) were increased by about a third by diclofenac, chiefly due to an increase in major coronary events.[18] Compared with placebo, of 1000 patients allocated to diclofenac for a year, three more had major vascular events, one of which was fatal.[18] Vascular death was increased significantly by diclofenac.[18]

Heart

In 2013, a study found major vascular events were increased by about a third by diclofenac, chiefly due to an increase in major coronary events.[18] Compared with placebo, of 1000 people allocated to diclofenac for a year, three more had major vascular events, one of which was fatal.[18] Vascular death was increased by diclofenac (1·65).[18]

Following the identification of increased risks of heart attacks with the selective COX-2 inhibitor rofecoxib in 2004, attention has focused on all the other members of the NSAIDs group, including diclofenac. Research results are mixed, with a meta-analysis of papers and reports up to April 2006 suggesting a relative increased rate of heart disease of 1.63 compared to nonusers.[19] Professor Peter Weissberg, Medical Director of the British Heart Foundation said, “However, the increased risk is small, and many patients with chronic debilitating pain may well feel that this small risk is worth taking to relieve their symptoms”. Only aspirin was found not to increase the risk of heart disease; however, this is known to have a higher rate of gastric ulceration than diclofenac. In Britain the Medicines and Healthcare Products Regulatory Agency (MHRA) said in June 2013 that the drug should not be used by people with serious underlying heart conditions—people who had suffered heart failure, heart disease or a stroke were advised to stop using it completely.[20] As of January 15, 2015 the MHRA announced that diclofenac will be reclassified as a prescription-only medicine (POM) due to the risk of cardiovascular adverse events.[21]

A subsequent large study of 74,838 Danish users of NSAIDs or coxibs found no additional cardiovascular risk from diclofenac use.[22] A very large study of 1,028,437 Danish users of various NSAIDs or coxibs found the “Use of the nonselective NSAID diclofenac and the selective cyclooxygenase-2 inhibitor rofecoxib was associated with an increased risk of cardiovascular death (odds ratio, 1.91; 95% confidence interval, 1.62 to 2.42; and odds ratio, 1.66; 95% confidence interval, 1.06 to 2.59, respectively), with a dose-dependent increase in risk.”[23]

Diclofenac is similar in COX-2 selectivity to celecoxib.[24]

Gastrointestinal

  • Gastrointestinal complaints are most often noted. The development of ulceration and/or bleeding requires immediate termination of treatment with diclofenac. Most patients receive a gastro-protective drug as prophylaxis during long-term treatment (misoprostolranitidine 150 mg at bedtime or omeprazole 20 mg at bedtime).

Liver

  • Liver damage occurs infrequently, and is usually reversible. Hepatitis may occur rarely without any warning symptoms and may be fatal. Patients with osteoarthritis more often develop symptomatic liver disease than patients with rheumatoid arthritis. Liver function should be monitored regularly during long-term treatment. If used for the short-term treatment of pain or fever, diclofenac has not been found more hepatotoxic than other NSAIDs.
  • As of December 2009, Endo, Novartis, and the US FDA notified healthcare professionals to add new warnings and precautions about the potential for elevation in liver function tests during treatment with all products containing diclofenac sodium.[25]
  • Cases of drug-induced hepatotoxicity have been reported in the first month, but can occur at any time during treatment with diclofenac. Postmarketing surveillance has reported cases of severe hepatic reactions, including liver necrosis, jaundice, fulminant hepatitis with and without jaundice, and liver failure. Some of these reported cases resulted in fatalities or liver transplantation.
  • Physicians should measure transaminases periodically in patients receiving long-term therapy with diclofenac. Based on clinical trial data and postmarketing experiences, transaminases should be monitored within 4 to 8 week after initiating treatment with diclofenac.

Kidney

  • NSAIDs “are associated with adverse renal [kidney] effects caused by the reduction in synthesis of renal prostaglandins[26] in sensitive persons or animal species, and potentially during long-term use in nonsensitive persons if resistance to side effects decreases with age. However, this side effect cannot be avoided merely by using a COX-2 selective inhibitor because, “Both isoforms of COX, COX-1 and COX-2, are expressed in the kidney… Consequently, the same precautions regarding renal risk that are followed for nonselective NSAIDs should be used when selective COX-2 inhibitors are administered.”[26] However, diclofenac appears to have a different mechanism of renal toxicity.[citation needed]
  • Studies in Pakistan showed diclofenac caused acute kidney failure in vultures when they ate the carcasses of animals that had recently been treated with it. Drug-sensitive species and individual humans are initially assumed to lack genes expressing specific drug detoxification enzymes.[27]

Mental health

  • Mental health side effects have been reported. These symptoms are rare, but exist in significant enough numbers to include as potential side effects. These include depression, anxiety, irritability, nightmares, and psychotic reactions.[28]

Mechanism of action

The primary mechanism responsible for its anti-inflammatoryantipyretic, and analgesic action is thought to be inhibition of prostaglandin synthesis by inhibition of the transiently expressed prostaglandin-endoperoxide synthase-2 (PGES-2) also known as cycloxygenase-2 (COX-2). It also appears to exhibit bacteriostatic activity by inhibiting bacterial DNA synthesis.[29]

Inhibition of prostaglandin synthesis occurs systemically resulting in undesirable symptoms such as irritation of the gastric epithelium.[citation needed] This is the main side effect of diclofenac. Diclofenac inhibits COX-2 with 20 times greater potency than the constitutively expressed isoenzyme COX-1[30] and has, therefore, a somewhat lower incidence of gastrointestinal complaints than noted with aspirin which inhibits COX-1 to a greater extent.

The action of one single dose is much longer (6 to 8 hr) than the very short 1.2–2 hr half-life of the drug would indicate. This could be partly because it persists for over 11 hours in synovial fluids.[31]

Diclofenac may also be a unique member of the NSAIDs. Some evidence indicates it inhibits the lipoxygenase pathways, thus reducing formation of the leukotrienes(also pro-inflammatory autacoids). It also may inhibit phospholipase A2 as part of its mechanism of action. These additional actions may explain its high potency – it is the most potent NSAID on a broad basis.[32]

Marked differences exist among NSAIDs in their selective inhibition of the two subtypes of cyclooxygenase, COX-1 and COX-2. Much pharmaceutical drug design has attempted to focus on selective COX-2 inhibition as a way to minimize the gastrointestinal side effects of NSAIDs such as aspirin. In practice, use of some COX-2 inhibitors with their adverse effects has led to massive numbers of patient family lawsuits alleging wrongful death by heart attack, yet other significantly COX-selective NSAIDs, such as diclofenac, have been well tolerated by most of the population.\

Besides the COX-inhibition, a number of other molecular targets of diclofenac possibly contributing to its pain-relieving actions have recently been identified. These include:

  • Blockage of voltage-dependent sodium channels (after activation of the channel, diclofenac inhibits its reactivation also known as phase inhibition)[citation needed]
  • Blockage of acid-sensing ion channels (ASICs)[33]
  • Positive allosteric modulation of KCNQ- and BK-potassium channels (diclofenac opens these channels, leading to hyperpolarization of the cell membrane)

Ecological effects

Use of diclofenac for animals is controversial due to toxicity when eaten by scavenging birds that eat dead animals; the drug has been banned for veterinary use in many countries.

Use of diclofenac in animals has been reported to have led to a sharp decline in the vulture population in the Indian subcontinent – a 95% decline by 2003[34] and a 99.9% decline by 2008. The mechanism is presumed to be renal failure;[35] however, toxicity may be due to direct inhibition of uric acid secretion in vultures.[36] Vultures eat the carcasses of livestockthat have been administered veterinary diclofenac, and are poisoned by the accumulated chemical,[37] as vultures do not have a particular enzyme to break down diclofenac. At a meeting of the National Wildlife Board in March 2005, the Government of India announced it intended to phase out the veterinary use of diclofenac.[38] Meloxicam is a safer alternative to replace use of diclofenac.[39] It is more expensive than diclofenac, but the price is coming down as more pharmaceutical companies begin to manufacture it.

Steppe eagles have the same vulnerability to diclofenac as vultures and may also fall victim to it.[40] Diclofenac has been shown also to harm freshwater fish species such as rainbow trout.[41][42][43][44] In contrast, New World vultures, such as the turkey vulture, can tolerate at least 100 times the level of diclofenac that is lethal to Gyps species.[45]

“The loss of tens of millions of vultures over the last decade has had major ecological consequences across the Indian Subcontinent that pose a potential threat to human health. In many places, populations of feral dogs (Canis familiaris) have increased sharply from the disappearance of Gyps vultures as the main scavenger of wild and domestic ungulatecarcasses. Associated with the rise in dog numbers is an increased risk of rabies[39] and casualties of almost 50,000 people.[46] The Government of India cites this as one of the major consequences of a vulture species extinction.[38] A major shift in the transfer of corpse pathogens from vultures to feral dogs and rats could lead to a disease pandemic, causing millions of deaths in a crowded country like India, whereas vultures’ digestive systems safely destroy many species of such pathogens. Vultures are long-lived and slow to breed. They start breeding only at the age of six and only 50% of young survive. Even if the government ban is fully implemented, it will take several years to revive the vulture population.[47]

The loss of vultures has had a social impact on the Indian Zoroastrian Parsi community, who traditionally use vultures to dispose of human corpses in Towers of Silence, but are now compelled to seek alternative methods of disposal.[39]

Despite the vulture crisis, diclofenac remains available in other countries including many in Europe.[48] It was controversially approved for veterinary use in Spain in 2013 and continues to be available, despite Spain being home to around 90% of the European vulture population and an independent simulation showing that the drug could reduce the population of vultures by 1-8% annually. Spain’s medicine agency presented simulations suggesting that the number of deaths would be quite small.[49][50]

Formulations and trade names

The name “diclofenac” derives from its chemical name: 2-(2,6-dichloranilino) phenylacetic acid. Diclofenac was first synthesized by Alfred Sallmann and Rudolf Pfister and introduced as Voltaren by Ciba-Geigy (now Novartis) in 1973, now by Glaxo SmithKline.[51]

In the United Kingdom, United States, India, and Brazil diclofenac may be supplied as either the sodium or potassium salt; in China, it is most often supplied as the sodium salt, while in some other countries it is only available as the potassium salt.

Pennsaid is a minimally systemic prescription topical lotion formulation of 1.5% w/w diclofenac sodium, which is approved in the US, Canada and other countries for osteoarthritis of the knee.

Flector Patch, a minimally systemic topical patch formulation of diclofenac, is indicated for acute pain due to minor sprains, strains, and contusions. The patch has been approved in many other countries outside the US under different brand names.

Voltaren and Voltarol contain the sodium salt of diclofenac. In the United Kingdom, Voltarol can be supplied with either the sodium salt or the potassium salt, while Cataflam, sold in some other countries, is the potassium salt only. However, Voltarol Emulgel contains diclofenac diethylammonium, in which a 1.16% concentration is equivalent to a 1% concentration of the sodium salt. In 2016 Voltarol was one of the biggest selling branded over-the-counter medications sold in Great Britain, with sales of £39.3 million.[52]

Diclofenac is available in stomach acid-resistant formulations (25 and 50 mg), fast-disintegrating oral formulations (25 and 50 mg), powder for oral solution (50 mg), slow- and controlled-release forms (75, 100 or 150 mg), suppositories (50 and 100 mg), and injectable forms (50 and 75 mg).

Diclofenac is also available over-the-counter in some countries: 12.5 mg diclofenac as potassium salt in Switzerland (Voltaren dolo), the Netherlands (Voltaren K), and preparations containing 25 mg diclofenac as the potassium salt in Germany (various trade names), New ZealandAustraliaJapan, (Voltaren Rapid), and Sweden (Voltaren T and Diclofenac T). Diclofenac as potassium salt can be found throughout the Middle East in 25 mg and 50 mg doses (Cataflam).

Solaraze (3% diclofenac sodium gel) is topically applied, twice a day for three months, to manage the skin condition known as actinic or solar keratosis. Parazone-DP is a combination of diclofenac potassium and paracetamol, manufactured and supplied by Ozone Pharmaceuticals and Chemicals, Gujarat, India. It is sold in Uruguay alone or, in combination with orphenadrine to treat muscle spasms/pain due to injuries (Dicloflex Ion).

On 14 January 2015, diclofenac oral preparations were reclassified as prescription-only medicines in the UK. The topical preparations are still available without prescription.[53]

Diclofenac formulations are available worldwide under many different trade names.[1]

Diclofenac
Title: Diclofenac
CAS Registry Number: 15307-86-5
CAS Name: 2-[(2,6-Dichlorophenyl)amino]benzeneacetic acid
Additional Names: [o-(2,6-dichloroanilino)phenyl]acetic acid
Trademarks: Motifene (Sankyo)
Molecular Formula: C14H11Cl2NO2
Molecular Weight: 296.15
Percent Composition: C 56.78%, H 3.74%, Cl 23.94%, N 4.73%, O 10.80%
Literature References: Prepn: NL 6604752; A. Sallmann, R. Pfister, US 3558690 (1966, 1971 both to Geigy). Pharmacology: Renaud, Lecompte, Thromb. Diath. Haemorrh. 24, 577 (1970), C.A. 74, 86215m (1971); Krupp et al., Experientia 29, 450 (1973). HPLC determn in plasma and urine: J. Godbillon et al., J. Chromatogr. 338, 151 (1985). Symposium on pharmacology and clinical experience: Semin. Arthritis Rheum. 15, Suppl. 1, 57-110 (1985); on pharmacology, efficacy and safety: Am. J. Med. 80, Suppl. 4B, 1-87 (1986). Comprehensive description: C. M. Adeyeye, P-K. Li, Anal. Profiles Drug Subs. 19, 123-144 (1990). Review of clinical trials in actinic keratosis: D. C. Peters, R. H. Foster, Drugs Aging 14, 313-319 (1999).
Properties: Crystals from ether-petr ether, mp 156-158°.
Melting point: mp 156-158°
Derivative Type: Diethylammonium salt
CAS Registry Number: 78213-16-8
Trademarks: Voltarol (Novartis)
Molecular Formula: C14H11Cl2NO2.C4H11N
Molecular Weight: 369.29
Percent Composition: C 58.54%, H 6.00%, Cl 19.20%, N 7.59%, O 8.66%
Derivative Type: Sodium salt
CAS Registry Number: 15307-79-6
Manufacturers’ Codes: GP-45840
Trademarks: Allvoran (TAD); Benfofen (Sanofi-Synthelabo); Dealgic (Pharmacia); Deflamat (Sankyo); Delphinac (Riemser); Dicloflex (Dexcel); Diclomax (Provalis); Diclophlogont (Azupharma); Dicloreum (Alfa); Duravolten (Dura); Ecofenac (Ecosol); Effekton (Teofarma); Lexobene (Merckle); Neriodin (Nagase); Novapirina (Novartis); Primofenac (Streuli); Prophenatin (Nipro); Rewodina (AWD); Rhumalgan (Sandoz); Voldal (Novartis); Voltaren (Novartis); Xenid (RPG)
Molecular Formula: C14H10Cl2NNaO2
Molecular Weight: 318.13
Percent Composition: C 52.86%, H 3.17%, Cl 22.29%, N 4.40%, Na 7.23%, O 10.06%
Properties: Crystals from water, mp 283-285°. uv max (methanol) 283 nm (e 1.05 ´ 105); (phosphate buffer, pH 7.2) 276 nm (e1.01 ´ 105). Soly at 25°C (mg/ml): deionized water (pH 5.2) >9; methanol >24; acetone 6; acetonitrile <1; cyclohexane <1; HCl (pH 1.1) <1; phosphate buffer (pH 7.2) 6. pKa 4. Partition coefficient (N-octanol/aq. buffer): 13.4. LD50 in mice, rats (mg/kg): ~390, 150 orally (Krupp).
Melting point: mp 283-285°
pKa: pKa 4
Log P: Partition coefficient (N-octanol/aq. buffer): 13.4
Absorption maximum: uv max (methanol) 283 nm (e 1.05 ´ 105); (phosphate buffer, pH 7.2) 276 nm (e 1.01 ´ 105)
Toxicity data: LD50 in mice, rats (mg/kg): ~390, 150 orally (Krupp)
Derivative Type: Potassium salt
CAS Registry Number: 15307-81-0
Manufacturers’ Codes: CGP-45840B
Trademarks: Cataflam (Novartis)
Molecular Formula: C14H10Cl2KNO2
Molecular Weight: 334.24
Percent Composition: C 50.31%, H 3.02%, Cl 21.21%, K 11.70%, N 4.19%, O 9.57%
Therap-Cat: Anti-inflammatory.
Keywords: Anti-inflammatory (Nonsteroidal); Arylacetic Acid Derivatives.

Synthesis

Image result for diclofenac synthesis

Last step

Proposed mechanism

enter image description here

The mechanism begins with the condensation of hydrazine onto a ketone (details not shown) to give a hydrazone. Under basic conditions, this hydrazone is deprotonated at nitrogen to give an anionic intermediate. In this case, the negative charge can be delocalized onto oxygen, resulting in an enolate structure. Typically, the negative charge is only shared between a nitrogen and carbon, so this substrate gives a particularly stable intermediate. Protonation of the enolate at carbon gives the first C-H bond necessary to form the product. A second deprotonation at nitrogen gives a similar flow of electrons to form another enolate structure, this time with cleavage of the C-N bond and release of nitrogen gas. Another C-protonation gives the lactam precursor to diclofenac. Cleavage of the amide with hydroxide (details not shown) gives the target.

Manufacturing Process
2, 6-Dichlorophenol is reacted with MMCA, Aniline and Chloro Acetyl Chloride and AlCl3 to yield (2, 6 –
Dichlorophenol) Indolinone is hydrolyzed using isopropyl alcohol and sodium hydroxide to give crude Diclofenac
Sodium. This on purification using deminerlised water and isopropyl alcohol gives the pure Diclofenac Sodium

CLIP

Image result for diclofenac nmr

Image result for diclofenac nmr

References

  1. Jump up to:a b “Diclofenac”Drugs.com. Retrieved 22 December 2018.
  2. ^ Mujib sayyad (August 23, 2018). “Diclofenac Oral Uses, Dosage, Side Effects And Composition”. Medicine Reviews Agency.
  3. Jump up to:a b c d e f g h i “Diclofenac epolamine Monograph for Professionals”Drugs.com. AHFS. Retrieved 22 December 2018.
  4. Jump up to:a b c d British national formulary : BNF 74 (74 ed.). British Medical Association. 2017. pp. 1033–1035. ISBN 978-0857112989.
  5. ^ Mosby’s Drug Reference for Health Professions. Elsevier Health Sciences. 2017. p. 398. ISBN 9780323566827.
  6. ^ Fischer, Janos (2006). Analogue-based drug discovery. Wiley-VCH. p. 517. ISBN 3527312579.
  7. ^ “NADAC as of 2018-12-19”Centers for Medicare and Medicaid Services. Retrieved 22 December 2018.
  8. ^ “The Top 300 of 2019”clincalc.com. Retrieved 22 December 2018.
  9. ^ “Diclofenac Epolamine”The American Society of Health-System Pharmacists. Retrieved 3 April 2011.
  10. Jump up to:a b “RUFENAL”. Birzeit Pharmaceutical Company. Archived from the original on 2011-05-26.
  11. ^ “Patient Site – CAMBIA (diclofenac potassium) for oral solution”cambiarx.
  12. ^ Dutta, NK; Mazumdar, K; Dastidar, SG; Park, JH (October 2007). “Activity of diclofenac used alone and in combination with streptomycin against Mycobacterium tuberculosis in mice”. International journal of antimicrobial agents30 (4): 336–40. doi:10.1016/j.ijantimicag.2007.04.016PMID 17644321.
  13. ^ “Diclofenac (Topical Application Route) Description and Brand Names – Mayo Clinic”http://www.mayoclinic.com.
  14. ^ cbg-meb.nl, SPC Netherlands
  15. ^ Wakai A, Lawrenson JG, Lawrenson AL, Wang Y, Brown MD, Quirke M, Ghandour O, McCormick R, Walsh CD, Amayem A, Lang E, Harrison N (2017). “Topical non-steroidal anti-inflammatory drugs for analgesia in traumatic corneal abrasions”. Cochrane Database Syst Rev5: CD009781. doi:10.1002/14651858.CD009781.pub2PMID 28516471.
  16. ^ “WHO – WHO’s cancer pain ladder for adults”http://www.who.int.
  17. ^ “Diclofenac Potassium”Drugs.com. Drugsite Trust. Retrieved 2015-11-15.
  18. Jump up to:a b c d e f g h Bhala, N.; Emberson, J.; et al. (2013). “Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials”The Lancet382 (9894): 769–779. doi:10.1016/S0140-6736(13)60900-9PMC 3778977PMID 23726390.
  19. ^ Kearney PM, Baigent C, Godwin J, Halls H, Emberson JR, Patrono C (2006). “Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials”BMJ332(7553): 1302–8. doi:10.1136/bmj.332.7553.1302PMC 1473048PMID 16740558.
  20. ^ “Heart risk warning over painkiller”. 29 June 2013 – via http://www.bbc.co.uk.
  21. ^ “Press release: Diclofenac tablets now only available as a prescription medicine”Medicines and Healthcare Products Regulatory Agency. January 14, 2015. Retrieved January 14, 2015.
  22. ^ Solomon DH, Avorn J, Stürmer T, Glynn RJ, Mogun H, Schneeweiss S (2006). “Cardiovascular outcomes in new users of coxibs and nonsteroidal antiinflammatory drugs: high-risk subgroups and time course of risk”. Arthritis Rheum54 (5): 1378–89. doi:10.1002/art.21887PMID 16645966.
  23. ^ Fosbøl EL, Folke F, Jacobsen S, Rasmussen JN, Sørensen R, Schramm TK, Andersen SS, Rasmussen S, Poulsen HE, Køber L, Torp-Pedersen C, Gislason GH (2010). “Cause-Specific Cardiovascular Risk Associated With Nonsteroidal Antiinflammatory Drugs Among Healthy Individuals”. Circ Cardiovasc Qual Outcomes3 (4): 395–405. doi:10.1161/CIRCOUTCOMES.109.861104PMID 20530789.
  24. ^ FitzGerald GA, Patrono C (2001). “The coxibs, selective inhibitors of cyclooxygenase-2”. N Engl J Med345 (6): 433–42. doi:10.1056/NEJM200108093450607PMID 11496855.
  25. ^ “fda.gov”.
  26. Jump up to:a b Brater DC (2002). “Renal effects of cyclooxygyenase-2-selective inhibitors”. J Pain Symptom Manage23 (4 Suppl): S15–20, discussion S21–3. doi:10.1016/S0885-3924(02)00370-6PMID 11992745.
  27. ^ Becker, Rachel. “Cattle drug threatens thousands of vultures”Naturedoi:10.1038/nature.2016.19839.
  28. ^ “Diclofenac Side Effects”Drugs.com. Retrieved 21 January 2013.
  29. ^ Dastidar SG, Ganguly K, Chaudhuri K, Chakrabarty AN (2000). “The anti-bacterial action of diclofenac shown by inhibition of DNA synthesis”. Int. J. Antimicrob. Agents14 (3): 249–51. doi:10.1016/S0924-8579(99)00159-4PMID 10773497.
  30. ^ Cryer, B.; Feldman, M. (1998). “Cyclooxygenase-1 and Cyclooxygenase-2 Selectivity of Widely Used Nonsteroidal Anti-Inflammatory Drugs”. The American Journal of Medicine104(5): 413–421. doi:10.1016/S0002-9343(98)00091-6.
  31. ^ Fowler PD, Shadforth MF, Crook PR, John VA (1983). “Plasma and synovial fluid concentrations of diclofenac sodium and its major hydroxylated metabolites during long-term treatment of rheumatoid arthritis”. Eur. J. Clin. Pharmacol25 (3): 389–94. doi:10.1007/BF01037953PMID 6628528.
  32. ^ Scholer. Pharmacology of Diclofenac Sodium. Am J of Medicine Volume 80 April 28, 1986
  33. ^ Voilley N, de Weille J, Mamet J, Lazdunski M: Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci. 2001 Oct 15;21(20):8026-33.
  34. ^ Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Chaudhry MJ, Arshad M, Mahmood S, Ali A, Khan AA (2004). “Diclofenac residues as the cause of vulture population decline in Pakistan”. Nature427 (6975): 630–3. Bibcode:2004Natur.427..630Odoi:10.1038/nature02317PMID 14745453.
  35. ^ Swan, Gerry E.; Cuthbert, Richard; Quevedo, Miguel; Green, Rhys E.; Pain, Deborah J.; Bartels, Paul; Cunningham, Andrew A.; Duncan, Neil; Meharg, Andrew A.; Oaks, J. Lindsay; Parry-Jones, Jemima; Shultz, Susanne; Taggart, Mark A.; Verdoorn, Gerhard; Wolter, Kerri (2006-06-22). “Toxicity of diclofenac to Gyps vultures”Biology Letters2 (2): 279–282. doi:10.1098/rsbl.2005.0425ISSN 1744-9561PMC 1618889PMID 17148382.
  36. ^ Naidoo V, Swan GE (August 2008). “Diclofenac toxicity in Gyps vulture is associated with decreased uric acid excretion and not renal portal vasoconstriction”. Comp. Biochem. Physiol. C Toxicol. Pharmacol149 (3): 269–74. doi:10.1016/j.cbpc.2008.07.014PMID 18727958.
  37. ^ “Vet drug ‘killing Asian vulturesBBC News. 2004-02-28.
  38. Jump up to:a b “Saving the Vultures from Extinction” (Press release). Press Information Bureau, Government of India. 2005-05-16. Retrieved 2006-05-12.
  39. Jump up to:a b c Swan G, Naidoo V, Cuthbert R, Green RE, Pain DJ, Swarup D, Prakash V, Taggart M, Bekker L, Das D, Diekmann J, Diekmann M, Killian E, Meharg A, Patra RC, Saini M, Wolter K (2006). “Removing the threat of diclofenac to critically endangered Asian vultures”PLoS Biol4 (3): e66. doi:10.1371/journal.pbio.0040066PMC 1351921PMID 16435886.
  40. ^ Phadnis, Mayuri (May 28, 2014). “Eagles fall prey to vulture-killing chemical”Pune Mirror. Retrieved May 28, 2014.
  41. ^ Schwaiger J, Ferling H, Mallow U, Wintermayr H, Negele RD (2004). “Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: Histopathological alterations and bioaccumulation in rainbow trout”. Aquat. Toxicol68 (2): 141–150. doi:10.1016/j.aquatox.2004.03.014PMID 15145224.
  42. ^ Triebskorn R, Casper H, Heyd A, Eikemper R, Köhler HR, Schwaiger J (2004). “Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part II: Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss)”. Aquat. Toxicol68(2): 151–166. doi:10.1016/j.aquatox.2004.03.015PMID 15145225.
  43. ^ Schwaiger & Triebskorn (2005). UBA-Berichte 29/05: 217-226.
  44. ^ Triebskorn R, Casper H, Scheil V, Schwaiger J (2007). “Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio)”. Anal Bioanal Chem387 (4): 1405–16. doi:10.1007/s00216-006-1033-xPMID 17216161.
  45. ^ Rattner BA, Whitehead MA, Gasper G, Meteyer CU, Link WA, Taggart MA, Meharg AA, Pattee OH, Pain DJ (2009). “Apparent tolerance of turkey vultures (Cathartes aura) to the non-steroidal anti-inflammatory drug diclofenac”. Environmental Toxicology and Chemistry27 (11): 2341–2345. doi:10.1897/08-123.1PMID 18476752.
  46. ^ Walker, Matt (August 6, 2008). “Rabies tragedy follows loss of India’s vultures”New Scientist.
  47. ^ Choudhary, Srishti (August 29, 2016). Decline in vulture population has given rise to diseases’: Dr Vibhu Prakash”The Indian Express. Retrieved December 12, 2018.
  48. ^ “E-010588/2015: answer given by Mr Andriukaitis on behalf of the Commission”European Parliament. Retrieved 2 May 2016.
  49. ^ Becker, Rachel. “Cattle drug threatens thousands of vultures”Nature. Retrieved 2 May2016.
  50. ^ International, BirdLife. “Vulture killing drug now available on EU market”http://www.birdlife.org.
  51. ^ Altman, R; Bosch, B; Brune, K; Patrignani, P; Young, C (May 2015). “Advances in NSAID development: evolution of diclofenac products using pharmaceutical technology”. Drugs75(8): 859–77. doi:10.1007/s40265-015-0392-zPMID 25963327.
  52. ^ “A breakdown of the over-the-counter medicines market in Britain in 2016”. Pharmaceutical Journal. 28 April 2017. Retrieved 29 May 2017.
  53. ^ “Oral diclofenac presentations with legal status ‘P’ – reclassified to POM – GOV.UK”http://www.gov.uk.

External links

References

    • US 3 558 690 (Geigy; 26.1.1971; CH-prior. 8.4.1965, 25.2.1966, 30.3.1966, 20.12.1967).
    • DAS 1 543 639 (Ciba-Geigy; appl. 7.4.1966; CH-prior. 8.4.1965).
    • DAS 1 793 592 (Ciba-Geigy; appl. 7.4.1966; CH-prior. 8.4.1965).
    • US 3 652 762 (Ciba-Geigy; 28.3.1972; prior. 9.12.1968, 29.9.1969, 14.4.1970).
    • US 3 778 470 (Geigy; 11.12.1973; appl. 2.10.1970; prior. 4.4.1966).
    • CH 492 679 (Geigy; appl. 30.3.1966).
  • Alternative synthesis:

    • DOS 2 613 838 (Ikeda Mohando; appl. 31.3.1976; J-prior. 31.3.1975).
Diclofenac
Diclofenac.svg
Diclofenac 3D.png
Clinical data
Trade names Cataflam, Voltaren, others[1]
AHFS/Drugs.com Monograph
MedlinePlus a689002
Pregnancy
category
  • AU: C
  • US: C (Risk not ruled out) in 1st and 2nd trimester, D in 3rd trimester
Routes of
administration
By mouth, rectal, intramuscularintravenous(renal- and gallstones), topical
ATC code
Legal status
Legal status
  • AU: S2 (Pharmacy only) – S4
  • UK: POM (Prescription only) (P for topical formulation)
  • ℞-only in most preparations/countries, limited OTC in some countries, manufacture and veterinary use is banned in India, Nepal, and Pakistan due to imminent extinction of local vultures
Pharmacokinetic data
Protein binding More than 99%
Metabolism Liver, oxidative, primarily by CYP2C9, also by CYP2C8CYP3A4, as well as conjugative by glucuronidation (UGT2B7) and sulfation;[2] no active metabolites exist
Elimination half-life 1.2–2 hr (35% of the drug enters enterohepatic recirculation)
Excretion 40% biliary 60% urine
Identifiers
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
PDB ligand
ECHA InfoCard 100.035.755 Edit this at Wikidata
Chemical and physical data
Formula C14H11Cl2NO2
Molar mass 296.148 g/mol
3D model (JSmol)

Diclofenac

    • ATC:M01AB05; M02AA15; S01BC03
  • Use:anti-inflammatory, antirheumatic
  • Chemical name:2-[(2,6-dichlorophenyl)amino]benzeneacetic acid
  • Formula:C14H11Cl2NO2
  • MW:296.15 g/mol
  • CAS-RN:15307-86-5
  • InChI Key:DCOPUUMXTXDBNB-UHFFFAOYSA-N
  • InChI:InChI=1S/C14H11Cl2NO2/c15-10-5-3-6-11(16)14(10)17-12-7-2-1-4-9(12)8-13(18)19/h1-7,17H,8H2,(H,18,19)
  • EINECS:239-348-5
  • LD50:170 mg/kg (M, p.o.);
    62.5 mg/kg (R, p.o.)

Monosodium salt

  • Formula:C14H10Cl2NNaO2
  • MW:318.14 g/mol
  • CAS-RN:15307-79-6
  • EINECS:239-346-4
  • LD50:116 mg/kg (M, i.v.); 390 mg/kg (M, p.o.);
    117 mg/kg (R, i.v.); 150 mg/kg (R, p.o.)

//////////////Diclofenac Sodium

C1=CC=C(C(=C1)CC(=O)[O-])NC2=C(C=CC=C2Cl)Cl.[Na+]

Diclofenac Sodium

structure depiction
FDA Orange Book Patent
FDA Orange Book Patents: 1 of 21 (FDA Orange Book Patent ID)
Patent 9339551
Expiration Oct 17, 2027
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 2 of 21 (FDA Orange Book Patent ID)
Patent 9339552
Expiration Oct 17, 2027
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 3 of 21 (FDA Orange Book Patent ID)
Patent 9415029
Expiration Jul 10, 2029
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 4 of 21 (FDA Orange Book Patent ID)
Patent 9370501
Expiration Jul 10, 2029
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 5 of 21 (FDA Orange Book Patent ID)
Patent 9375412
Expiration Jul 10, 2029
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 6 of 21 (FDA Orange Book Patent ID)
Patent 8946292
Expiration Mar 22, 2027
Applicant JAVELIN PHARMS INC
Drug Application N022396 (Prescription Drug: DYLOJECT. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 7 of 21 (FDA Orange Book Patent ID)
Patent 9168305
Expiration Oct 17, 2027
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 8 of 21 (FDA Orange Book Patent ID)
Patent 9168304
Expiration Oct 17, 2027
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 9 of 21 (FDA Orange Book Patent ID)
Patent 9220784
Expiration Oct 17, 2027
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 10 of 21 (FDA Orange Book Patent ID)
Patent 6407079
Expiration Jun 18, 2019
Applicant JAVELIN PHARMS INC
Drug Application N022396 (Prescription Drug: DYLOJECT. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 11 of 21 (FDA Orange Book Patent ID)
Patent 8252838
Expiration Apr 21, 2028
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 12 of 21 (FDA Orange Book Patent ID)
Patent 8618164
Expiration Jul 10, 2029
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 13 of 21 (FDA Orange Book Patent ID)
Patent 8546450
Expiration Aug 9, 2030
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 14 of 21 (FDA Orange Book Patent ID)
Patent 8217078
Expiration Jul 10, 2029
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 15 of 21 (FDA Orange Book Patent ID)
Patent 8563613
Expiration Oct 17, 2027
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 16 of 21 (FDA Orange Book Patent ID)
Patent 8871809
Expiration Oct 17, 2027
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 17 of 21 (FDA Orange Book Patent ID)
Patent 9066913
Expiration Oct 17, 2027
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 18 of 21 (FDA Orange Book Patent ID)
Patent 8741956
Expiration Jul 10, 2029
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 19 of 21 (FDA Orange Book Patent ID)
Patent 9101591
Expiration Oct 17, 2027
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 20 of 21 (FDA Orange Book Patent ID)
Patent 9132110
Expiration Oct 17, 2027
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)
FDA Orange Book Patents: 21 of 21 (FDA Orange Book Patent ID)
Patent 9539335
Expiration Oct 17, 2027
Applicant HZNP
Drug Application N204623 (Prescription Drug: PENNSAID. Ingredients: DICLOFENAC SODIUM)

Aceclofenac, ацеклофенак , أسيكلوفيناك , 醋氯芬酸 , アセクロフェナク

$
0
0

Aceclofenac.png

Aceclofenac

アセクロフェナク

  • Molecular FormulaC16H13Cl2NO4
  • Average mass354.185 Da
(2-{2-[(2,6-Dichlorophenyl)amino]phenyl}acetoxy)acetic acid [ACD/IUPAC Name]
(2-{2-[(2,6-Dichlorphenyl)amino]phenyl}acetoxy)essigsäure [German] [ACD/IUPAC Name]
5608
89796-99-6 [RN]
Aceclofenac [BAN] [INN] [JAN] [Wiki]
acéclofénac [French] [INN]
Aceclofenaco [Spanish] [INN]
Aceclofenacum [Latin] [INN]
Acide (2-{2-[(2,6-dichlorophényl)amino]phényl}acétoxy)acétique [French] [ACD/IUPAC Name]
Benzeneacetic acid, 2-[(2,6-dichlorophenyl)amino]-, carboxymethyl ester [ACD/Index Name]
RPK779R03H
ацеклофенак[Russian][INN]
أسيكلوفيناك[Arabic][INN]
醋氯芬酸[Chinese][INN]
[({2-[(2,6-dichlorophenyl)amino]phenyl}acetyl)oxy]acetic acid
[2-(2,6-Dichloro-phenylamino)-phenyl]-acetic acid carboxymethyl ester
Aceclofenac
CAS Registry Number: 89796-99-6
CAS Name: 2-[(2,6-Dichlorophenyl)amino]benzeneacetic acid carboxymethyl ester
Additional Names: 2-[(2,6-dichlorophenyl)amino]phenylacetoxyacetic acid; glycolic acid [o-(2,6-dichloroanilino)phenyl]acetate ester
Manufacturers’ Codes: PR-82/3
Trademarks: Airtal (Prodes); Falcol (Bayer); Gerbin (Sanofi Winthrop); Preservex (BMS)
Molecular Formula: C16H13Cl2NO4
Molecular Weight: 354.18
Percent Composition: C 54.26%, H 3.70%, Cl 20.02%, N 3.95%, O 18.07%
Literature References: Prepn: A. V. Casas, ES8404783idem,US4548952 (1984, 1985 both to Prodes). Gastrointestinal tolerance in rats in comparison with diclofenac, q.v.: V. Rimbau et al.,Farmaco Ed. Prat.43, 19 (1988). Clinical trial in comparison with acetaminophen, q.v., in episiotomal pain: A. Yscla, Drugs Exp. Clin. Res.14, 491 (1988). Clinical evaluation in rheumatoid arthritis: R. Ballesteros et al.,Clin. Trials J.27, 12 (1990).
Properties: White crystals from cyclohexane, mp 149-150°. uv max (ethanol): 275 nm (log e 4.14).
Melting point: mp 149-150°
Absorption maximum: uv max (ethanol): 275 nm (log e 4.14)
Therap-Cat: Anti-inflammatory; analgesic.
Keywords: Analgesic (Non-Narcotic); Anti-inflammatory (Nonsteroidal); Arylacetic Acid Derivatives.
UV-Vis spectra of Aceclofenac.
Fig. 9

 Characterization of Aceclofenac by 1H NMR spectroscopy

1H NMR (400 MHz, DMSO-d6δ (ppm) 3.896 (s, 2H, Aliphatic –CH2), 4.634 (s, 2H, Aliphatic –CH2), 6.279 (d J= 8.00HZ, 1H, Aromatic), 6.887 (t, J = 7.2 Hz, 1H), 6.936 (s, 1H, NH), 7.039(t, J = 7.6 Hz, 1H, Aromatic), 7.225 (t J= 8.00 HZ, 1H, Aromatic), 7.260 (d J= 8.00 HZ, 1H, Aromatic), 7.537 (d J= 8.4HZ, 2H, Aromatic), 13.076 (s, 1H, Carboxylic acid) …https://www.sciencedirect.com/science/article/pii/S2214180417301290

str1str2str3str4

 

 

https://www.dea.gov/sites/default/files/pr/microgram-journals/2014/mj11-1_29-41.pdf

Aceclofenac is a nonsteroidal anti-inflammatory drug (NSAID) analog of diclofenac. It is used for the relief of pain and inflammation in rheumatoid arthritisosteoarthritis and ankylosing spondylitis.

Aceclofenac (C16H13Cl2NO4), chemically [(2-{2, 6-dichlorophenyl) amino} phenylacetooxyacetic acid], is a crystalline powder with a molecular weight of 354.19. It is practically insoluble in water with good permeability. It is metabolized in human hepatocytes and human microsomes to form [2-(2′,6′-dichloro-4′-hydroxy- phenylamino) phenyl] acetoxyacetic acid as the major metabolite, which is then further conjugated. According to the Biopharmaceutical Classification System (BCS) drug substances are classified to four classes upon their solubility and permeability. Aceclofenac falls under the BCS Class II, poorly soluble and highly permeable drug.[1]

Aceclofenac works by inhibiting the action of cyclooxygenase (COX) that is involved in the production of prostaglandins (PG) which is accountable for pain, swelling, inflammation and fever. The incidence of gastric ulcerogenicity of aceclofenac has been reported to be significantly lower than that of the other frequently prescribed NSAIDs, for instance, 2-folds lesser than naproxen, 4-folds lesser than diclofenac, and 7-folds lesser than indomethacin.

Aceclofenac should not be given to people with porphyria or breast-feeding mothers, and is not recommended for children. It should be avoided near term in a pregnant woman because of the risk of having a patent ductus arteriosus in the neonate.

Image result for aceclofenac

SYN

Manufacturing Process for Aceclofenac
Stage-1
T Butanol and Chloro Acetyl Chloride react in presence of NN Dimethyl Aniline at low temperature. After reaction
organics mass wash with water and sodium bicarbonate solution to get stage-1

Stage-2
Stage-I react with Diclofenac Sodium in presence of TBAB in Toluene media, further react with formic acid and
reaction mass quenching in water and product is isolated by filtration. Finally Crude Aceclofenac purified in ethyl
acetate and charcoal. Pure product isolated by filtration.

str1 str2 str3

SYN’

EP 0119932; US 4548952

Alkylation of the sodium salt of diclofenac (I) with benzyl bromoacetate (II) in hot DMF yielded the (arylacetoxy)acetate (III). Subsequent hydrogenolysis of the benzyl ester of (III) in the presence of Pd/C gave the title carboxylic acid. Alternatively, the benzyl ester group of (III) was cleaved by means of the combination of chlorotrimethylsilane and sodium iodide. This method of selective ester hydrolysis with in situ generated iodotrimethylsilane was also applied to the corresponding methyl (IV) and tert-butyl (V) esters. In a related procedure, tert-butyl ester (V) was prepared by alkylation of diclofenac (VI) with tert-butyl bromoacetate (VII) in the presence of tertiary amines. Selective cleavage of the tert-butyl ester group of (V) was then performed by treatment with either trifluoroacetic or formic acid.

SYN

ES 2046141

Aceclofenac was prepared by selective hydrolysis of other labile ester precursors. Alkylation of diclofenac sodium (I) with tetrahydropyranyl chloroacetate (IX), prepared by protection of chloroacetic acid (VIII) with dihydropyran, furnished the tetrahydropyranyl ester of aceclofenac (X), which was then deprotected by treatment with HCl. Similarly, the preparation of aceclofenac was reported by acidic hydrolysis of the analogous tetrahydrofuranyl ester (XI).

References

  1. ^ Karmoker, J.R.; Sarkar, S.; Joydhar, P.; Chowdhury, S.F. (2016). “Comparative in vitro equivalence evaluation of some Aceclofenac generic tablets marketed in Bangladesh” (PDF)The Pharma Innovation Journal5: 3–7. Retrieved 2016-09-01.
Sources

References

    • EP 119 932 (Prodes; appl. 19.3.1984; E-prior. 21.3.1983).
    • US 4 548 952 (Prodes; 22.10.1985; appl. 15.3.1984; E-prior. 21.3.1983).
  • Alternative synthesis:

    • ES 2 020 146 (Prodesfarma; appl. 29.5.1990).
    • ATC:M01AB16
  • Use:non-steroidal anti-inflammatory, analgesic, non-selective cyclooxigenase inhibitor
  • Chemical name:2-[(2,6-dichlorophenyl)amino]benzeneacetic acid carboxymethyl ester
  • Formula:C16H13Cl2NO4
  • MW:354.19 g/mol
  • CAS-RN:89796-99-6
  • InChI Key:MNIPYSSQXLZQLJ-UHFFFAOYSA-N
  • InChI:InChI=1S/C16H13Cl2NO4/c17-11-5-3-6-12(18)16(11)19-13-7-2-1-4-10(13)8-15(22)23-9-14(20)21/h1-7,19H,8-9H2,(H,20,21)
  • LD50:121 mg/kg (M, p.o.)
Aceclofenac
Aceclofenac.png
Clinical data
Trade names Hifenac, Cincofen, Zerodol, Nacsiv, Acenac, others
AHFS/Drugs.com International Drug Names
Routes of
administration
oral, topical
ATC code
Legal status
Legal status
  • UK: POM (Prescription only)
Identifiers
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
ECHA InfoCard 100.169.686 Edit this at Wikidata
Chemical and physical data
Formula C16H13Cl2NO4
Molar mass 353.02161 g/mol
3D model (JSmol)

//////////Aceclofenac, ацеклофенак أسيكلوفيناك 醋氯芬酸 , アセクロフェナク

Ifetroban イフェトロバン

$
0
0

Ifetroban.svg

ChemSpider 2D Image | 3-[2-({(1S,2R,3S)-3-[4-(Pentylcarbamoyl)-1,3-oxazol-2-yl]-7-oxabicyclo[2.2.1]hept-2-yl}methyl)phenyl]propanoic acid | C25H32N2O5

Ifetroban.png

Ifetroban イフェトロバン

3-[2-({(1S,2R,3S)-3-[4-(Pentylcarbamoyl)-1,3-oxazol-2-yl]-7-oxabicyclo[2.2.1]hept-2-yl}methyl)phenyl]propanoic acid

  • Molecular FormulaC25H32N2O5
  • Average mass440.532 Da
  • 143443-90-7;
3-[2-({(1S,2R,3S)-3-[4-(Pentylcarbamoyl)-1,3-oxazol-2-yl]-7-oxabicyclo[2.2.1]hept-2-yl}methyl)phenyl]propanoic acid
Benzenepropanoic acid, 2-[[(1S,2R,3S)-3-[4-[(pentylamino)carbonyl]-2-oxazolyl]-7-oxabicyclo[2.2.1]hept-2-yl]methyl]-
3-[2-[[(1S,5S,6R)-5-[4-(pentylcarbamoyl)-1,3-oxazol-2-yl]-7-oxabicyclo[2.2.1]heptan-6-yl]methyl]phenyl]propanoic acid
Benzenepropanoic acid, 2-((3-(4-((pentylamino)carbonyl)-2-oxazolyl)-7-oxabicyclo(2.2.1)hept-2-yl)methyl)-, (1S-(exo,exo))-
BMS 180,291
BMS 180291-02
BMS180291
BMS 18029; BMS 180291; BMS 180291A; BMS-180291-02; Boxaban; CPI 211; Hepatoren; Portaban; Vasculan

Ifetroban is a potent and selective thromboxane receptor antagonist.[1]

Ifetroban has been used in trials studying the treatment of Skin Diseases, Autoimmune Diseases, Pathologic Processes, Scleroderma, Limited, and Scleroderma, Diffuse, among others.

This compound belongs to the class of organic compounds known as phenylpropanoic acids. These are compounds with a structure containing a benzene ring conjugated to a propanoic acid.

  • OriginatorBristol-Myers Squibb
  • DeveloperBristol-Myers Squibb; Cumberland Pharmaceuticals; Vanderbilt-Ingram Cancer Center
  • ClassAntiasthmatics; Antihypertensives; Antiplatelets; Heterocyclic bicyclo compounds; Oxazoles; Small molecules
  • Mechanism of ActionThromboxane A2 receptor antagonists
  • Phase IIAsthma; Hepatorenal syndrome; Portal hypertension; Solid tumours; Systemic scleroderma
  • DiscontinuedCoronary thrombosis; Peripheral vascular disorders; Thrombosis
  • 12 Dec 2018Phase-II clinical trials in Solid tumours (Metastatic disease, Late-stage disease, Second-line therapy or greater, Recurrent) in USA (PO) (NCT03694249)
  • 13 Nov 2018Efficacy and adverse events data from a phase II trial in Portal hypertension released by Cumberland Pharmaceuticals
  • 03 Oct 2018Vanderbilt-Ingram Cancer Center and Cumberland Pharmaceuticals plans a phase II trial for Solid tumours (Metastatic disease, Late-stage disease, Second-line therapy or greater, Recurrent) (PO, capsule) (NCT03694249)

ChemSpider 2D Image | Ifetroban sodium | C25H31N2NaO5

Ifetroban sodium

  • Molecular FormulaC25H31N2NaO5
  • Average mass462.514 Da
  • Monoisotopic mass462.213074 Da
156715-37-6 [RN]
Benzenepropanoic acid, 2-[[(1S,2R,3S,4R)-3-[4-[(pentylamino)carbonyl]-2-oxazolyl]-7-oxabicyclo[2.2.1]hept-2-yl]methyl]-, sodium salt (1:1)
Ifetroban sodium
Sodium 3-[2-({(1S,2R,3S,4R)-3-[4-(pentylcarbamoyl)-1,3-oxazol-2-yl]-7-oxabicyclo[2.2.1]hept-2-yl}methyl)phenyl]propanoate

Image result for Aceclofenac DRUG FUTURE

SYN

BMS-180291 sodium salt was prepared from optically active 7-oxabicyclo[2.2.1]heptane lactol (I): The interphenylene side chain was introduced by deprotonation of (I) with ethylmagnesium bromide (0.95 eq.) followed by treatment with excess aryl Grignard (II) to afford crystalline diol (III). The extraneous benzylic hydroxyl group in (III) was removed by reduction with hydrogen in the presence of Pearlman’s catalyst to give alcohol (IV). Transformation of the alpha-side chain silyloxy carbinol of (IV) to a carboxymethyl ester was accomplished by initial protection of the omega-side chain alcohol as the acetate (Ac2O/py) followed by oxidation under Jones conditions and then exposure of the resulting crude acetate-acid to methanolic hydrogen chloride to afford crystalline alcohol-ester (V). Oxidation of (V) under Jones conditions furnished acid-ester (VI). The oxazole side chain was introduced into (VI) via serine-derived amino alcohol (VII). Standard coupling of acid (VI) with (VII) mediated by water-soluble carbodiimide (EDAC) gave amide (VIII). Acyclic side chain intermediate (VIII) was converted into oxazole (X) in three steps by mesylation followed by treatment with triethylamine to furnish cyclized oxazoline (IX). Dehydrogenation of (IX) employing a novel oxidative protocol (1) involving treatment with a mixture of copper (II) bromide and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in chloroform/ethyl acetate solvent yielded oxazole (X). Saponification of (X) followed by acidification afforded (BMS-180291) as a white solid which could be purified by recrystallization from acetonitrile. The water-soluble sodium salt (XI) was available as a precipitate from BMS-18091 by treatment with sodium methoxide/methanol in acetone.

SYN

The interphenylene side chain was introduced by deprotonation of (I) with ethylmagnesium bromide (0.95 eq.) followed by treatment with excess aryl Grignard (II) to afford crystalline diol (III). The extraneous benzylic hydroxyl group in (III) was removed by reduction with hydrogen in the presence of Pearlman’s catalyst to give alcohol (IV). Transformation of the alpha-side chain silyloxy carbinol to a carboxy methyl ester was accomplished by initial protection of the omega-side chain alcohol as the acetate (Ac2O/pyr) followed by oxidation under Jones conditions and then exposure of the resulting crude acetate-acid to methanolic hydrogen chloride to afford crystalline alcohol-ester (V). Oxidation of (V) under Jones conditions furnished acid-ester (VI). The oxazole side chain was introduced into (VI) via serine-derived amino alcohol (VII). Standard coupling of acid (VI) with (VII) mediated by water-soluble carbodiimide (EDAC) gave amide (VIII). Acyclic side chain intermediate (VIII) was converted into oxazole (X) in three steps by mesylation followed by treatment with triethylamine to furnish cyclized oxazoline (IX). Dehydrogenation of (IX) employing a novel oxidative protocol involving treatment with a mixture of copper (II) bromide and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in chloroform/ethyl acetate solvent yielded oxazole (X). Saponification of (X) followed by acidification afforded (XI) (BMS-180291) as a white solid which could be purified by recrystallization from acetonitrile. The water-soluble sodium salt was available as a precipitate from (XI) by treatment with sodium methoxide/methanol in acetone.

SYN

Org Process Res Dev 1997,1(1),14

The synthesis of [1S-(1alpha,2alpha,3alpha,4alpha)]-2-[2-[2-(methoxycarbonyl)ethyl]benzyl]-7-oxabicyclo[2.2.1]heptane-3-carboxylic acid (VI), a key intermediate in the synthesis of 203961 [see scheme 20396101a] has been presented: This compound has been obtained by two similar ways: 1) The condensation of L-valinol (XII) with anhydride (XXII) catalyzed by oxalic acid gives imide (XIII), which is treated with ethylmagnesium chloride, the Grignard reagent (XIV) and NaBH4 yielding intermediate (XV). This intermediate, without isolation, is treated with HCl in THF to afford the substituted benzaldehyde (XVI), which is condensed with trimethyl phosphonoacetate (XVII) and DBU in acetonitrile giving the propenoic ester (XVIII). Finally, this compound is submitted to a simultaneous reduction and hydrogenolysis with H2 over a Pearlman catalyst in methanol to provide the target of [1S-(1alpha,2alpha,3alpha,4alpha)]-2-[2-[2-(methoxycarbonyl)ethyl]benzyl]-7-oxabicyclo[2.2.1]heptane-3-carboxylic acid (VI). 2) The preceding reaction sequence can also be performed using (S)-2-phenylglycinol (XIX) instead of the L-valinol (XII) yielding the previously reported benzaldehyde (XVI) through the imide (XX) and the nonisolated intermediate (XXI).


References

  1. ^ Dockens, RC; Santone, KS; Mitroka, JG; Morrison, RA; Jemal, M; Greene, DS; Barbhaiya, RH (August 2000). “Disposition of Radiolabeled Ifetroban in Rats, Dogs, Monkeys, and Humans”(PDF)Drug Metabolism and Disposition28 (8): 973–80. PMID 10901709. Retrieved 5 October 2016.
Ifetroban
Ifetroban.svg
Identifiers
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEMBL
Chemical and physical data
Formula C25H32N2O5
Molar mass 440.53 g/mol
3D model (JSmol)

////////Ifetroban, BMS 18029, BMS 180291, BMS 180291A, BMS-180291-02, Boxaban, CPI 211, Hepatoren, Portaban, Vasculan, イフェトロバン

CCCCCNC(=O)C1=COC(=N1)C2C3CCC(C2CC4=CC=CC=C4CCC(=O)O)O3

Nalmefene hydrochloride dihydrate, ナルメフェン塩酸塩水和物 ,

$
0
0

1228646-70-5.png

Nalmefene sceletal.svg

str1

Nalmefene hydrochloride dihydrate, ナルメフェン塩酸塩水和物

2019/1/8, PMDA, JAPAN, Selincro,

In January 2019, Otsuka received regulatory approval in Japan

Antialcohol dependence, Narcotic antagonist, Opioid receptor partial agonist/antagonist

Morphinan-3,14-diol, 17-(cyclopropylmethyl)-4,5-epoxy-6-methylene-, hydrochloride, hydrate (1:1:2), (5α)-

Formula
C21H25NO3. HCl. 2H2O
CAS
1228646-70-5
5096-26-9 free form
58895-64-0 (Nalmefene HCl)
Mol weight
411.9196

JF-1; NIH-10365; ORF-11676; SRD-174, Lu-AA36143

APPROVED 1995 USA

Trade Name:Revex®   MOA:Opioid receptor antagonist     Indication:Respiratory depression

Company:Baxter (Originator)

17- (cyclopropylmethyl)-4,5-alpha-epoxy-6-methylenemorphinan-3,14-diol

(5α)-17-(Cyclopropylmethyl)-4,5-epoxy-6-methylenemorphinan-3,14-diol;

(-)-Nalmefene;

6-Deoxo-6-methylenenaltrexone; 6-Desoxy-6-methylenenaltrexone;

JF 1; Nalmetrene; ORF 11676;

CHINA 2013

Approval Date Approval Type Trade Name Indication Dosage Form Strength Company Review Classification
2013-11-13 Marketing approval Respiratory depression Injection 1 ml:0.1 mg 灵宝市豫西药业 3.1类
2013-09-22 Marketing approval 抒纳 Respiratory depression Injection 1 ml:0.1 mg(以纳美芬计) 辽宁海思科制药 3.1类
2013-08-02 Marketing approval 乐萌 Respiratory depression Injection 1 ml:0.1 mg 成都天台山制药 3.1类
2012-12-31 Marketing approval Respiratory depression Injection 1 ml:0.1 mg (以C21H25NO3计) 北京四环制药
2012-05-15 Marketing approval Respiratory depression Injection 1 ml:0.1 mg 西安利君制药

EMA  LINK

In February 2013, EC approval in all EU member states was granted for the reduction of alcohol consumption in adults with alcohol dependence

str1

Nalmefene hydrochloride dihydrate is a white or almost white crystalline powder. The chemical name is 17-(Cyclopropylmethyl)-4,5-α-epoxy-6-methylene-morphinan-3,14-diol hydrochloride dihydrate, has the following molecular formula C21H25NO3 ⋅ HCl ⋅ 2 H2O

Nalmefene hydrochloride dihydrate is very soluble in water and is not hygroscopic. Nalmefene hydrochloride dihydrate is a chiral compound, containing 4 asymmetric carbon atoms. Only one crystal form of Nalmefene hydrochloride dihydrate has been identified. Nalmefene hydrochloride dihydrate does not melt, but becomes amorphous after dehydration.

The structure of nalmefene hydrochloride dihydrate was demonstrated by elemental analysis, IR, UV/Vis, 1 H-NMR and 13C-NMR spectroscopy as well as MS spectrometry. Its crystal structure was analysed by X-ray diffraction and specific optical rotation was determined. It has been shown that no polymorphic forms were observed.

PATENTS AND GENERICS

The original product patent was based on US 03814768 which expired in 1991. However, a number of patents cover formulations and use. Lundbeck and Biotie have a family based on WO 2010063292 which claims novel crystal forms and hydrate salts, in particular Nalmefene hydrochloride dihydrate, and their use in alcohol dependence.  There are European and US patents granted on this EP 02300479 will expire December 2029 and US-08530495 will expire August 2030.

Nalmefene hydrochloride was approved by the U.S. Food and Drug Administration (FDA) on Apr 17, 1995. It was developed and marketed asRevex® by Baxterin in the US.
Nalmefene  is an opioid receptor antagonist. It acts as a silent antagonist of the μ-opioid receptor and as a partial agonist of the κ-opioid receptor, it also possesses affinity for the δ-opioid receptor. Revex® is indicated for the complete or partial reversal of opioid drug effects, including respiratory depression, induced by either natural or synthetic opioids. It is also indicated in the management of known or suspected opioid overdose.

Revex® is available as a sterile solution for intravenous, intramuscular and subcutaneous administration in two concentrations, containing 100 μg or 1.0 mg of nalmefene free base per mL. The recommended dose is initiating at 0.25 μg/kg followed by 0.25 μg/kg incremental doses at 2-5 minute intervals for reversal of postoperative opioid depression, stopping as soon as the desired degree of opioid reversal is obtained.

Nalmefene (trade name Selincro), originally known as nalmetrene, is an opioid antagonist used primarily in the management of alcohol dependence. It has also been investigated for the treatment of other addictions such as pathological gambling.[1]

Nalmefene is an opiate derivative similar in both structure and activity to the opioid antagonist naltrexone. Advantages of nalmefene relative to naltrexone include longer half-life, greater oral bioavailability and no observed dose-dependent liver toxicity.[2]

As with other drugs of this type, nalmefene may precipitate acute withdrawal symptoms in patients who are dependent on opioid drugs, or more rarely when used post-operatively, to counteract the effects of strong opioids used in surgery.

Medical uses

Opioid overdose

Intravenous doses of nalmefene have been shown effective at counteracting the respiratory depression produced by opioid overdose.[3]

This is not the usual application for this drug, for two reasons:

  • The half-life of nalmefene is longer than that of naloxone. One might have thought this would make it useful for treating overdose involving long-acting opioids: it would require less frequent dosing, and hence reduce the likelihood of renarcotization as the antagonist wears off. But, in fact, the use of nalmefene is not recommended in such situations. Unfortunately, opioid-dependent patients may go home and use excessive doses of opioids in order to overcome nalmefene’s opioid blockade and to relieve the discomfort of opioid withdrawal. Such large doses of opioids may be fatal. This is why naloxone (a shorter-acting drug) is normally a better choice for overdose reversal.[4]
  • In addition, injectable nalmefene is no longer available on the market.

When nalmefene is used to treat an opioid overdose, doses of nalmefene greater than 1.5 mg do not appear to give any greater benefit than doses of only 1.5 mg.

Alcohol dependence

Nalmefene is used in Europe to reduce alcohol dependence[5] and NICE recommends the use of nalmefene to reduce alcohol consumption in combination with psychological support for people who drink heavily.[6]

Based on a meta analysis, the usefulness of nalmefene for alcohol dependence is unclear.[7] Nalmefene, in combination with psychosocial management, may decrease the amount of alcohol drunk by people who are alcohol dependent.[7][8] The medication may also be taken “as needed”, when a person feels the urge to consume alcohol.[8]

Side effects

The following adverse effects have been reported with nalmefene:

Very Common (≥1⁄10)[edit]

  • Insomnia
  • Dizziness
  • Headache
  • Nausea

Common (≥1⁄100 to <1/10)[edit]

  • Decreased appetite
  • Sleep disorder
  • Confusional state
  • Restlessness
  • Libido decreased (including loss of libido)
  • Somnolence
  • Tremor
  • Disturbance in attention
  • Paraesthesia
  • Hypoaesthesia
  • Tachycardia
  • Palpitations
  • Vomiting
  • Dry mouth
  • Diarrhoea
  • Hyperhidrosis
  • Muscle spasms
  • Fatigue
  • Asthenia
  • Malaise
  • Feeling abnormal
  • Weight decreased

The majority of these reactions were mild or moderate, associated with treatment initiation, and of short duration.[9]

Pharmacology

Pharmacodynamics

Nalmefene acts as a silent antagonist of the μ-opioid receptor (MOR) (Ki = 0.24 nM) and as a weak partial agonist (Ki = 0.083 nM; Emax = 20–30%) of the κ-opioid receptor (KOR), with similar affinity for these two receptors but a several-fold preference for the KOR.[10]

[11][12] In vivo evidence indicative of KOR activation, such as elevation of serum prolactin levels due to dopamine suppression and increased hypothalamic-pituitary-adrenal axisactivation via enhanced adrenocorticotropic hormone and cortisol secretion, has been observed in humans and animals.[10][13] Side effects typical of KOR activation such as hallucinations and dissociation have also been observed with nalmefene in human studies.[14] It is thought that the KOR activation of nalmefene might produce dysphoria and anxiety.[15] In addition to MOR and KOR binding, nalmefene also possesses some, albeit far lower affinity for the δ-opioid receptor (DOR) (Ki = 16 nM), where it behaves as an antagonist.[10][12][16]

Nalmefene is structurally related to naltrexone and differs from it by substitution of the ketone group at the 6-position of naltrexone with a methylene group (CH2). It binds to the MOR with similar affinity relative to naltrexone, but binds “somewhat more avidly” to the KOR and DOR in comparison.[10][13]

Pharmacokinetics

Nalmefene is extensively metabolized in the liver, mainly by conjugation with glucuronic acid and also by N-dealkylation. Less than 5% of the dose is excreted unchanged. The glucuronide metabolite is entirely inactive, while the N-dealkylated metabolite has minimal pharmacological activity.[citation needed]

Chemistry

Nalmefene is a derivative of naltrexone and was first reported in 1975.[17]

Society and culture

United States

In the US, immediate-release injectable nalmefene was approved in 1995 as an antidote for opioid overdose. It was sold under the trade name Revex. The product was discontinued by its manufacturer around 2008.[18][19] Perhaps, due to its price, it never sold well. (See § Opioid overdose, above.)

Nalmefene in pill form, which is used to treat alcohol dependence and other addictive behaviors, has never been sold in the United States.[2]

Europe

Lundbeck has licensed nalmefene from Biotie Therapies and performed clinical trials with nalmefene for treatment of alcohol dependence.[20] In 2011 they submitted an application for their drug termed Selincro to the European Medicines Agency.[21] The drug was approved for use in the EU in March 2013.[22] and in October 2013 Scotland became the first country in the EU to prescribe the drug for alcohol dependence.[23] England followed Scotland by offering the substance as a treatment for problem drinking in October 2014.[24] In November 2014 nalmefene was appraised and approved as a treatment supplied by Britain’s National Health Service (NHS) for reducing alcohol consumption in people with alcohol dependence.[25]

Research

Nalmefene is a partial agonist of the κ-opioid receptor and may be useful to treat cocaine addiction.[26]

SYN

Nalmefene (CAS NO.: 55096-26-9), with its systematic name of Morphinan-3,14-diol, 17-(cyclopropylmethyl)-4,5-epoxy-6-methylene-, (5alpha)-, could be produced through many synthetic methods.

Following is one of the synthesis routes:
By a Wittig reaction at naltrexone (I) with triphenylmethylphosphonium bromide (II) in DMSO in the presence of NaH as base.

Image result for nalmefene synthesis

PAPER

JMed. Chem197518, 259-262

https://pubs.acs.org/doi/pdf/10.1021/jm00237a008

PATENT

WO 2010136039

PATENT

US 3814768

Mol. Formula:   C21H25NO3
Appearance:   Off-White to Pale Yellow Solid
Melting Point:   182-185˚C
Mol. Weight:   339.43

Nalmefene (trade name Selincro), originally known as nalmetrene, is an opioid receptor antagonist developed in the early 1970s,[1] and used primarily in the management of alcohol dependence, and also has been investigated for the treatment of other addictions such as pathological gambling and addiction to shopping.

Nalmefene is an opiate derivative similar in both structure and activity to the opiate antagonist naltrexone. Advantages of nalmefene relative to naltrexone include longer half-life, greater oral bioavailability and no observed dose-dependent liver toxicity. As with other drugs of this type, nalmefene can precipitate acute withdrawal symptoms in patients who are dependent on opioid drugs, or more rarely when used post-operatively to counteract the effects of strong opioids used in surgery.

Nalmefene differs from naltrexone by substitution of the ketone group at the 6-position of naltrexone with a methylene group (CH2), which considerably increases binding affinity to the μ-opioid receptor. Nalmefene also has high affinity for the other opioid receptors, and is known as a “universal antagonist” for its ability to block all three.

In clinical trials using this drug, doses used for treating alcoholism were in the range of 20–80 mg per day, orally.[2] The doses tested for treating pathological gambling were between 25–100 mg per day.[3] In both trials, there was little difference in efficacy between the lower and higher dosage regimes, and the lower dose (20 and 25 mg, respectively) was the best tolerated, with similar therapeutic efficacy to the higher doses and less side effects. Nalmefene is thus around twice as potent as naltrexone when used for the treatment of addictions.

Intravenous doses of nalmefene at between 0.5 to 1 milligram have been shown effective at counteracting the respiratory depression produced by opiate overdose,[4] although this is not the usual application for this drug as naloxone is less expensive.

Doses of nalmefene greater than 1.5 mg do not appear to give any greater benefit in this application. Nalmefene’s longer half-life might however make it useful for treating overdose involving longer acting opioids such as methadone, as it would require less frequent dosing and hence reduce the likelihood of renarcotization as the antagonist wears off.

Nalmefene is extensively metabolised in the liver, mainly by conjugation with glucuronic acid and also by N-dealkylation. Less than 5% of the dose is excreted unchanged. The glucuronide metabolite is entirely inactive, while the N-dealkylated metabolite has minimal pharmacological activity.

Lundbeck has licensed the drug from Biotie Therapies and performed clinical trials with nalmefene for treatment of alcohol dependence.[5] In 2011 they submitted an application for their drug termed Selincro to the European Medicines Agency.[6] It has not been available on the US market since at least August 2008.[citation needed]

Side effects

Properties

  • Soluble in water up to 130 mg/mL, soluble in chloroform up to 0.13 mg/mL
  • pKa 7.6
  • Distribution half-life: 41 minutes

Nalmefene is a known opioid receptor antagonist which can inhibit pharmacological effects of both administered opioid agonists and endogenous agonists deriving from the opioid system. The clinical usefulness of nalmefene as antagonist comes from its ability to promptly (and selectively) reverse the effects of these opioid agonists, including the frequently observed depressions in the central nervous system and the respiratory system.

Nalmefene has primarily been developed as the hydrochloride salt for use in the management of alcohol dependency, where it has shown good effect in doses of 10 to 40 mg taken when the patient experiences a craving for alcohol (Karhuvaara et al, Alcohol. Clin. Exp. Res., (2007), Vol. 31 No. 7. pp 1179-1187). Additionally, nalmefene has also been investigated for the treatment of other addictions such as pathological gambling and addiction to shopping. In testing the drug in these developmental programs, nalmefene has been used, for example, in the form of parental solution (Revex™).

Nalmefene is an opiate derivative quite similar in structure to the opiate antagonist naltrexone. Advantages of nalmefene compared to naltrexone include longer half- life, greater oral bioavailability and no observed dose-dependent liver toxicity. Nalmefene differs structurally from naltrexone in that the ketone group at the 6- position of naltrexone is replaced by a methylene (CH2) group, which considerably increases binding affinity to the μ-opioid receptor. Nalmefene also has high affinity for the other opioid receptors (K and δ receptors) and is known as a “universal antagonist” as a result of its ability to block all three receptor types.

Nalmefene can be produced from naltrexone by the Wittig reaction. The Wittig reaction is a well known method within the art for the synthetic preparation of olefins (Georg Wittig, Ulrich Schόllkopf (1954). “Uber Triphenyl-phosphin- methylene ah olefinbildende Reagenzien I”. Chemische Berichte 87: 1318), and has been widely used in organic synthesis.

The procedure in the Wittig reaction can be divided into two steps. In the first step, a phosphorus ylide is prepared by treating a suitable phosphonium salt with a base. In the second step the ylide is reacted with a substrate containing a carbonyl group to give the desired alkene.

The preparation of nalmefene by the Wittig reaction has previously been disclosed by Hahn and Fishman (J. Med. Chem. 1975, 18, 259-262). In their method, naltrexone is reacted with the ylide methylene triphenylphosphorane, which is prepared by treating methyl triphenylphosphonium bromide with sodium hydride (NaH) in DMSO. An excess of about 60 equivalents of the ylide is employed in the preparation of nalmefene by this procedure.

For industrial application purposes, the method disclosed by Hahn and Fishman has the disadvantage of using a large excess of ylide, such that very large amounts phosphorus by-products have to be removed before nalmefene can be obtained in pure form. Furthermore, the NaH used to prepare the ylide is difficult to handle on an industrial scale as it is highly flammable. The use of NaH in DMSO is also well known by the skilled person to give rise to unwanted runaway reactions. The Wittig reaction procedure described by Hahn and Fishman gives nalmefene in the form of the free base. The free base is finally isolated by chromatography, which may be not ideal for industrial applications.

US 4,535,157 also describes the preparation of nalmefene by use of the Wittig reaction. In the method disclosed therein the preparation of the ylide methylene triphenylphosphorane is carried out by using tetrahydrofuran (THF) as solvent and potassium tert-butoxidc (KO-t-Bu) as base. About 3 equivalents of the ylide are employed in the described procedure.

Although the procedure disclosed in US 4,535,157 avoids the use of NaH and a large amount of ylide, the method still has some drawbacks which limit its applicability on an industrial scale. In particular, the use of THF as solvent in a Wittig reaction is disadvantageous because of the water miscibility of THF. During the aqueous work-up much of the end product (nalmefene) may be lost in the aqueous phases unless multiple re-extractions are performed with a solvent which is not miscible with water.

Furthermore, in the method described in US 4,535,157, multiple purification steps are carried out in order to remove phosphine oxide by-products of the Wittig reaction. These purification steps require huge amounts of solvents, which is both uneconomical and labor extensive requiring when running the reaction on an industrial scale. As in the case of the Wittig reaction procedure described by Hahn and Fishman (see above) the Wittig reaction procedure disclosed in US 4,535,157 also yields nalmefene as the free base, such that an additional step is required to prepare the final pharmaceutical salt form, i.e. the hydrochloride, from the isolated nalmefene base.

US 4,751,307 also describes the preparation of nalmefene by use of the Wittig reaction. Disclosed is a method wherein the synthesis is performed using anisole (methoxybenzene) as solvent and KO-t-Bu as base. About 4 equivalents of the ylide methylene triphenylphosphorane were employed in this reaction. The product was isolated by extraction in water at acidic pHs and then precipitating at basic pHs giving nalmefene as base.

Even though the isolation procedure for nalmefene as free base is simplified, it still has some disadvantages. The inventors of the present invention repeated the method disclosed in US 4,751,307 and found that the removal of phosphine oxide by-products was not efficient. These impurities co-precipitate with the nalmefene during basifϊcation, yielding a product still contaminated with phosphorus byproducts and having, as a consequence, a low chemical purity, as illustrated in example 2 herein.

There is therefore a need within the field to improve the method of producing nalmefene by the Wittig reaction. In particular, there is a need for a method that is readily applicable on a large industrial scale and which avoids the use of water- miscible solvents, such as THF, in the Wittig reaction, and permits easy isolation of nalmefene in a pure form suitable for its transformation to the final pharmaceutical salt form.

………………………………..

http://www.google.com/patents/EP2435439A1?cl=en

present invention the Wittig reaction may be performed by mixing a methyltriphenylphosphonium salt with 2- methyltetrahydrofuran (MTHF) and a suitable base to afford the ylide methylene triphenylphosphorane :

Figure imgf000007_0001

Methyltriphenylphosphonium salt Methylene triphenylphosphorane Yhde

The preformed ylide is subsequently reacted ‘in situ’ with naltrexone to give nalmefene and triphenylphosphine oxide (TPPO):

Figure imgf000007_0002

Naltrexone Yhde    Nalmefene TPPO

Example 1 Methyltriphenylphosphonium bromide (MTPPB, 25.8 Kg) was suspended in 2- methyltetrahydrofuran (MTHF, 56 litres). Keeping the temperature in the range 20-250C, KO-t-Bu (8.8 kg) was charged in portions under inert atmosphere in one hour. The suspension turned yellow and was stirred further for two hours. An anhydrous solution of naltrexone (8.0 Kg) in MTHF (32 litres) was then added over a period of one hour at 20-250C. The suspension was maintained under stirring for a few hours to complete the reaction. The mixture was then treated with a solution of ammonium chloride (4.2 Kg) in water (30.4 litres) and then further diluted with water (30.4 litres). The phases were separated, the lower aqueous phase was discarded and the organic phase was washed twice with water (16 litres). The organic phase was concentrated to residue under vacuum and then diluted with dichloromethane (40 litres) to give a clear solution. Concentrated aqueous hydrochloric acid (HCl 37%, 2 litres) was added over one hour at 20- 250C. The suspension was stirred for at least three hours at the same temperature, and then filtered and washed with dichloromethane (8 litres) and then with acetone (16 litres). The solid was then re-suspended in dichloromethane (32 litres) at 20-250C for a few hours and then filtered and washed with dichloromethane (16 litres), affording 9.20 Kg of nalmefene hydrochloride, corresponding to 7.76 kg of nalmefene hydrochloride (99.7% pure by HPLC). Molar yield 89%.

HPLC Chromatographic conditions

Column: Zorbax Eclipse XDB C-18, 5 μm, 150 x 4.6 mm or equivalent Mobile Phase A: Acetonitrile / Buffer pH = 2.3 10 / 90

Mobile Phase B: Acetonitrile / Buffer pH = 2.3 45 / 55

Buffer: Dissolve 1.1 g of Sodium Octansulfonate in 1 L of water. Adjust the pH to 2.3 with diluted

H3PO4. Column Temperature: 35°C

Detector: UV at 230 nm

Flow: 1.2 ml/min

Injection volume: 10 μl

Time of Analysis: 55 minutes

Figure imgf000019_0001

Example 2

The procedure described in US 4,751,307 was repeated, starting from 1Og of naltrexone and yielding 8.5g of nalmefene. The isolated product showed the presence of phosphine oxides by-products above 15% molar as judged by 1HNMR.

Example 3.

Methyltriphenylphosphonium bromide (MTPPB, 112.9g) was suspended in 2- methyltetrahydrofuran (MTHF, 245 ml). Keeping the temperature in the range 20- 25°C, KO-t-Bu (38.7 g) was charged in portions under inert atmosphere in one hour. The suspension was stirred for two hours. An anhydrous solution of naltrexone (35 g) in MTHF (144 ml) was then added over a period of one hour at 20-250C. The suspension was maintained under stirring overnight. The mixture was then treated with a solution of glacial acetic acid (17.7 g) in MTHF. Water was then added and the pH was adjusted to 9-10. The phases were separated, the lower aqueous phase was discarded and the organic phase was washed twice with water. The organic phase was concentrated to residue under vacuum and then diluted with dichloromethane (175 ml) to give a clear solution. Concentrated aqueous hydrochloric acid (HCl 37%, 10. Ig) was added over one hour at 20- 25°C. The suspension was stirred and then filtered and washed with dichloromethane and acetone. The product was dried affording 38.1g of Nalmefene HCl. Example 4

Example 3 was repeated but the Wittig reaction mixture after olefmation completeness was treated with acetone and then with an aqueous solution of ammonium chloride. After phase separation, washings, distillation and dilution with dichloromethane, the product was precipitated as hydrochloride salt using HCl 37%. The solid was filtered and dried affording 37.6 g of Nalmefene HCl.

Example 5 Preparation of Nalmefene HCl dihydrate from Nalmefene HCl Nalmefene HCl (7.67 Kg, purity 99.37%, assay 93.9%) and water (8.6 litres) were charged into a suitable reactor. The suspension was heated up to 800C until the substrate completely dissolved. Vacuum was then applied to remove organic solvents. The resulting solution was filtered through a 0.65 μm cartridge and then diluted with water (2.1 litres) that has been used to rinse the reactor and pipelines. The solution was cooled down to 500C and 7 g of Nalmefene HCl dihydrate seeding material was added. The mixture was cooled to 0-50C over one hour with vigorous stirring and then maintained under stirring for one additional hour. The solid was filtered of and washed with acetone. The wet product was dried at 25°C under vacuum to provide 5.4 Kg of Nalmefene HCl dihydrate (purity 99.89%, KF 8.3% , yield 69%).

………………….

http://www.google.com/patents/EP2316456A1?cl=en

……………………

http://www.google.com/patents/US8598352

Figure US08598352-20131203-C00003

Lundbeck’s novel alcohol dependency drug has been endorsed by the National Institute for Health and Care Excellence (NICE) for use in Britain’s state health service.

read at

http://www.clinicalleader.com/doc/nice-endorses-lundbeck-s-alcohol-dependency-drug-for-use-in-uk-0001

A structural analog of Naltrexone (N285780) with opiate antagonist activity used in pharmaceutical treatment of alcoholism. Other pharmacological applications of this compound aim to reduce food cravings, drug abuse and pulmonary disease in affected individuals. Used as an opioid-induced tranquilizer on large animals in the veterinary industry. Narcotic antagonist.

NALMEFENE
Nalmefene sceletal.svg

References

  1. ^ NCT00132119 ClinicalTrials.gov
  2. Jump up to:a b See: “Drug Record: Nalmefene”LiverToxNational Library of Medicine. 24 March 2016.
  3. ^ Label information. U.S. Food and Drug Administration“Archived copy” (PDF). Archived from the original on October 13, 2006. Retrieved 2014-11-07.
  4. ^ Based on: Stephens, Everett. “Opioid Toxicity Medication » Medication Summary”Medscape. WebMD LLC.
  5. ^ “Selincro 18mg film-coated tablets”. UK Electronic Medicines Compendium. September 2016.
  6. ^ “Technology appraisal guidance [TA325]: Nalmefene for reducing alcohol consumption in people with alcohol dependence”. NICE. 26 November 2014.
  7. Jump up to:a b Palpacuer, C; Laviolle, B; Boussageon, R; Reymann, JM; Bellissant, E; Naudet, F (December 2015). “Risks and benefits of nalmefene in the treatment of adult alcohol dependence: a systematic literature review and meta-analysis of published and unpublished double-blind randomized controlled trials”PLOS Medicine12 (12): e1001924. doi:10.1371/journal.pmed.1001924PMC 4687857PMID 26694529.
  8. Jump up to:a b Paille, François; Martini, Hervé (2014). “Nalmefene: a new approach to the treatment of alcohol dependence”Substance Abuse and Rehabilitation5 (5): 87–94. doi:10.2147/sar.s45666PMC 4133028PMID 25187751.
  9. ^ “Selincro”European Medicines Agency. Retrieved 3 November 2015.
  10. Jump up to:a b c d Bart, G; Schluger, JH; Borg, L; Ho, A; Bidlack, JM; Kreek, MJ (December 2005). “Nalmefene induced elevation in serum prolactin in normal human volunteers: partial kappa opioid agonist activity?” (PDF)Neuropsychopharmacology30 (12): 2254–62. doi:10.1038/sj.npp.1300811PMID 15988468.
  11. ^ Bart G, Schluger JH, Borg L, Ho A, Bidlack JM, Kreek MJ (2005). “Nalmefene induced elevation in serum prolactin in normal human volunteers: partial kappa opioid agonist activity?”Neuropsychopharmacology30 (12): 2254–62. doi:10.1038/sj.npp.1300811PMID 15988468.
  12. Jump up to:a b Linda P. Dwoskin (29 January 2014). Emerging Targets & Therapeutics in the Treatment of Psychostimulant Abuse. Elsevier Science. pp. 398–. ISBN 978-0-12-420177-4.
  13. Jump up to:a b Niciu, Mark J.; Arias, Albert J. (2013). “Targeted opioid receptor antagonists in the treatment of alcohol use disorders”CNS Drugs27 (10): 777–787. doi:10.1007/s40263-013-0096-4ISSN 1172-7047PMC 4600601PMID 23881605.
  14. ^ “Nalmefene (new drug) Alcohol dependence: no advance”Prescrire International23(150): 150–152. 2014. PMID 25121147. (subscription required)
  15. ^ Stephen M. Stahl (15 May 2014). Prescriber’s guide: Stahl’s essential psychopharmacology. Cambridge University Press. pp. 465–. ISBN 978-1-139-95300-9.
  16. ^ Grosshans M, Mutschler J, Kiefer F (2015). “Treatment of cocaine craving with as-needed nalmefene, a partial κ opioid receptor agonist: first clinical experience”. International Clinical Psychopharmacology30 (4): 237–8. doi:10.1097/YIC.0000000000000069PMID 25647453.
  17. ^ Fulton, Brian S. (2014). Drug Discovery for the Treatment of Addiction: Medicinal Chemistry Strategies. John Wiley & Sons. p. 341. ISBN 9781118889572.
  18. ^ See: “Baxter discontinues Revex injection”Monthly Prescribing Reference website. Haymarket Media, Inc. 9 July 2008. Retrieved 10 October 2016.
  19. ^ “Drug Shortages”. FDA Center for Drug Evaluation and Research. Archived from the original on 26 December 2008.
  20. ^ “Efficacy of nalmefene in patients with alcohol dependence (ESENSE1)”.
  21. ^ “Lundbeck submits Selincro in EU; Novo Nordisk files Degludec in Japan”. The Pharma Letter. 22 December 2011.
  22. ^ “Selincro”European Medicines Agency. 13 March 2013.
  23. ^ “Alcohol cravings drug nalmefene granted approval in Scotland”. BBC News. 7 October 2013.
  24. ^ “Nalmefene granted approval in England”The Independent. 3 October 2014.
  25. ^ “Alcohol dependence treatment accepted for NHS use”. MIMS. 26 November 2014.
  26. ^ Bidlack, Jean M (2014). “Mixed κ/μ partial opioid agonists as potential treatments for cocaine dependence”. Adv. Pharmacol69: 387–418. doi:10.1016/B978-0-12-420118-7.00010-XPMID 24484983.
Nalmefene
Nalmefene sceletal.svg
Clinical data
Trade names Selincro
AHFS/Drugs.com Monograph
MedlinePlus a605043
License data
Routes of
administration
By mouth, intravenous
ATC code
Legal status
Legal status
  • UK: POM (Prescription only)
Pharmacokinetic data
Protein binding 45%
Metabolism hepatic
Elimination half-life 10.8 ± 5.2 hours
Excretion renal
Identifiers
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
ChEMBL
ECHA InfoCard 100.164.948 Edit this at Wikidata
Chemical and physical data
Formula C21H25NO3
Molar mass 339.43 g/mol
3D model (JSmol)

Nalmefene

17-cyclopropylmethyl-4,5α-epoxy-6-methylenemorphinan-3,14-diol

march 1 2013

Lundbeck will be celebrating news that European regulators have issued a green light for Selincro, making it the first therapy approved for the reduction of alcohol consumption in dependent adults.

Selincro (nalmefene) is a unique dual-acting opioid system modulator that acts on the brain’s motivational system, which is dysregulated in patients with alcohol dependence.

The once daily pill has been developed to be taken on days when an alcoholic feels at greater risk of having a drink, in a strategy that aims to reduce – rather than stop – alcohol consumption, which some experts believe is a more realistic goal.

Clinical trials of the drug have shown that it can reduce alcohol consumption by approximately 60% after six months treatment, equating to an average reduction of nearly one bottle of wine per day.

In March last year, data was published from two Phase III trials, ESENSE 1 and ESENSE 2, showing that the mean number of heavy drinking days decreased from 19 to 7 days/month and 20 to 7 days/month, while TAC fell from 85 to 43g/day and from 93 to 30g/day at month six. However, the placebo effect was also strong in the studies.

According to Anders Gersel Pedersen, Executive Vice President and Head of Research & Development at Lundbeck, Selincro “represents the first major innovation in the treatment of alcohol dependence in many years,” and he added that its approval “is exciting news for the many patients with alcohol dependence who otherwise may not seek treatment”.

Alcohol dependence is considered a major public health concern, and yet it is both underdiagnosed and undertreated, highlighting the urgent need for better management of the condition.

In Europe, more than 90% of the 14 million patients with alcohol dependence are not receiving treatment, but research suggests that treating just 40% of these would save 11,700 lives each year.

The Danish firm said it expects to launch Selincro in its first markets in mid-2013, and that it will provide the drug as part of “a new treatment concept that includes continuous psychosocial support focused on the reduction of alcohol consumption and treatment adherence”.

Nalmefene (Revex), originally known as nalmetrene, is an opioid receptor antagonistdeveloped in the early 1970s, and used primarily in the management of alcoholdependence, and also has been investigated for the treatment of other addictions such aspathological gambling and addiction to shopping.

Nalmefene is an opiate derivative similar in both structure and activity to the opiate antagonist naltrexone. Advantages of nalmefene relative to naltrexone include longer half-life, greater oral bioavailability and no observed dose-dependent liver toxicity. As with other drugs of this type, nalmefene can precipitate acute withdrawal symptoms in patients who are dependent on opioid drugs, or more rarely when used post-operatively to counteract the effects of strong opioids used in surgery.

Nalmefene differs from naltrexone by substitution of the ketone group at the 6-position of naltrexone with a methylene group (CH2), which considerably increases binding affinity to the μ-opioid receptor. Nalmefene also has high affinity for the other opioid receptors, and is known as a “universal antagonist” for its ability to block all three.

  1. US patent 3814768, Jack Fishman et al, “6-METHYLENE-6-DESOXY DIHYDRO MORPHINE AND CODEINE DERIVATIVES AND PHARMACEUTICALLY ACCEPTABLE SALTS”, published 1971-11-26, issued 1974-06-04
  2.  Barbara J. Mason, Fernando R. Salvato, Lauren D. Williams, Eva C. Ritvo, Robert B. Cutler (August 1999). “A Double-blind, Placebo-Controlled Study of Oral Nalmefene for Alcohol Dependence”Arch Gen Psychiatry 56 (8): 719.
  3.  Clinical Trial Of Nalmefene In The Treatment Of Pathological Gambling
  4.  http://www.fda.gov/cder/foi/label/2000/20459S2lbl.pdf
  5. “Efficacy of Nalmefene in Patients With Alcohol Dependence (ESENSE1)”“Lundbeck submits Selincro in EU; Novo Nordisk files Degludec in Japan”. thepharmaletter. 22 December 2011.
  6. Nalmefene Hydrochloride Drug Information, Professional
NALMEFENE
17-cyclopropylmethyl-4,5α-epoxy-6-methylenemorphinan-3,14-diol
Sihuan Pharmaceutical Holdings Group Ltd a leading pharmaceutical company with the largest cardio-cerebral vascular drug franchise in China’s prescription market, announced that the new Category 3.1 drug, the Nalmefene Hydrochloride Injection received a new drug certificate (H20120078) and approval for production (2012S00818) from the State Food and Drug Administration. Nalmefene Hydrochloride is yet another generic drug for which the Company has received approval for production following the Roxatidine Acetate Hydrochloridefor Injection. It will be manufactured by Beijing Sihuan Pharmaceutical Co., Ltd., a wholly-owned manufacturing subsidiary of the Company.
Nalmefene hydrochloride is a next generation opioid (opium) receptor inhibitor following Naloxone and Naltrexone. The injection formulation of Naloxone hydrochloride was invented by Ohmeda Pharmaceuticals and was approved by the US Food and Drug Administration (FDA) in 1995. The clinical uses of Nalmefene hydrochloride include anti-shock, neuroprotection, treatment for acute morphine poisoning, drug relapse prevention, recovery from the after-effects of anesthesia such as respiratory and nerve center depression and the treatment of unconsciousness persons.
The drug is also effective for treating heart failure and spinal cord injuries, for cerebral protection, etc. Multi-centre, randomized, blind, and positive-controlled clinical research of Nalmefene hydrochloride of Sihuan Pharmaceutical were performed by the Peking University First Hospital, the First Affiliated Hospital of China Medical University, Xijing Hospital (The First Affiliated Hospital of the Fourth Military Medical College) and Qingdao Municipal Hospital.

Compared to Naloxone, Nalmefene demonstrates longer curative effects and fewer adverse reactions. With its high bioavailability, biological activities and biofilm penetration ability, it helps to regulate respiration, circulation, digestion, and the endocrine and nervous systems. It is becoming a substitute for Naloxone, and has been included in Part B of the National Medicine Catalogue. At present, the size of the Nalmefene hydrochloride market in China is approximately RMB1 billion. As a substitution for Naloxone hydrochloride, Nalmefene hydrochloride has enormous market potential.
Diseases of the central nervous system (CNS) are common in China, which has an immense patient base. Due to the rapid pace of modern life, accelerated urbanisation and mental stress, the demand for CNS medicines has seen rapid growth in recent years given the rising number of patients. According to IMS, the size of the CNS drug market now exceeds RMB 23 billion. With the CNS drug market expected to reach RMB 100 billion in 2020, the Group sees great potential and strong growth prospects in the market.Dr. Che Fengsheng, Chairman and CEO of Sihuan Pharmaceutical, said, “Nalmefene Hydrochloride has shown better characteristics for treatment and higher clinical value than Naloxone. Its market demonstrates great potential to expand. Leveraging Sihuan Pharmaceutical’s strong marketing capabilities and extensive sales and distribution network, we believe that our market share for Nalmefene Hydrochloride will see rapid growth, which will strengthen our position in drugs for the treatment of major diseases of the central nervous system. Together with other new products, this will in turn enhance the continuous development and growth of Sihuan Pharmaceutical in China’s prescription drug market and create value for the shareholders and the Company.”

REVEX (nalmefene hydrochloride injection), an opioid antagonist, is a 6-methylene analogue of naltrexone. The chemical structure is shown below:

REVEX (nalmefene hydrochloride) Structural Formula Illustration

Molecular Formula: C21H25NO3•HCl

Molecular Weight: 375.9, CAS # 58895-64-0

Chemical Name: 17-(Cyclopropylmethyl)-4,5a-epoxy-6-methylenemorphinan-3,14-diol, hydrochloride salt.

Nalmefene hydrochloride is a white to off-white crystalline powder which is freely soluble in water up to 130 mg/mL and slightly soluble in chloroform up to 0.13 mg/mL, with a pKa of 7.6.

REVEX is available as a sterile solution for intravenous, intramuscular, and subcutaneous administration in two concentrations, containing 100 µg or 1.0 mg of nalmefene free base per mL. The 100 µg/mL concentration contains 110.8 µg of nalmefene hydrochloride and the 1.0 mg/mL concentration contains 1.108 mg of nalmefene hydrochloride per mL. Both concentrations contain 9.0 mg of sodium chloride per mL and the pH is adjusted to 3.9 with hydrochloric acid.

Concentrations and dosages of REVEX are expressed as the free base equivalent of nalmefene

////////////////////JF-1, NIH-10365, ORF-11676, SRD-174, JAPAN 2019, FDA 1995, Nalmefene hydrochloride dihydrate, ナルメフェン塩酸塩水和物 , Nalmefene, ema 2013, china, 2013, Lu-AA36143

TIABENDAZOLE, тиабендазол , تياباندازول , 噻苯达唑 , チアベンダゾール;

$
0
0

ChemSpider 2D Image | Tiabendazole | C10H7N3S

Thiabendazole.svg

TIABENDAZOLE

CAS: 148-79-8

  • Molecular FormulaC10H7N3S
  • Average mass201.248 Da
  • тиабендазол [Russian] [INN]
    تياباندازول [Arabic] [INN]
    噻苯达唑 [Chinese] [INN]
  • チアベンダゾール;
1436
148-79-8 [RN]
1H-Benzimidazole, 2-(4-thiazolyl)-
2-(1,3-Thiazol-4-yl)-1H-benzimidazole
2-(4-Thiazoly)benzimidazole
205-725-8 [EINECS]
28558-32-9 [RN]
90507-06-5 [RN]
Arbotect [Trade name]
Benzimidazole, 2-(4-thiazolyl)-
Mintezol [Trade name]
N1Q45E87DT
MK 360 / MK-360 / NSC-525040 / NSC-90507

Tiabendazole (INNBAN), thiabendazole (AANUSAN), TBZ (and the trade names Mintezol, Tresaderm, and Arbotect) is a preservative[1]

2-Substituted benzimidazole first introduced in 1962. It is active against a variety of nematodes and is the drug of choice for strongyloidiasis. It has CNS side effects and hepatototoxic potential. (From Smith and Reynard, Textbook of Pharmacology, 1992, p919)

Thiabendazole
CAS Registry Number: 148-79-8
CAS Name: 2-(4-Thiazolyl)-1H-benzimidazole
Additional Names: 4-(2-benzimidazolyl)thiazole
Manufacturers’ Codes: MK-360
Trademarks: Equizole (Merial); Mertect (Syngenta); Mintezol (Merck & Co.); Tecto (Syngenta)
Molecular Formula: C10H7N3S
Molecular Weight: 201.25
Percent Composition: C 59.68%, H 3.51%, N 20.88%, S 15.93%
Literature References: Prepd by the reaction of 4-thiazolecarboxamide with o-phenylenediamine in polyphosphoric acid: H. D. Brown et al., J. Am. Chem. Soc. 83, 1764 (1961); L. H. Sarett, H. D. Brown, US 3017415 (1962 to Merck & Co.). Synthesis of labeled thiabendazole: D. J. Tocco et al., J. Med. Chem. 7, 399 (1964). Alternate route of synthesis: V. J. Grenda et al., J. Org. Chem. 30, 259 (1965). Anthelmintic props: H. D. Brown et al., loc. cit.; K. C. Kates et al., J. Parasitol. 57, 356 (1971). Fungicidal props: H. J. Robinson et al., J. Invest. Dermatol. 42, 479 (1966). Systemic props in plants: D. C. Erwin et al., Phytopathology 58,860 (1968). Toxicity: H. J. Robinson et al., Toxicol. Appl. Pharmacol. 7, 53 (1965). Residue analysis: IUPAC Appl. Chem. Div., Pure Appl. Chem. 52, 2567 (1980). Comprehensive description: V. K. Kapoor, Anal. Profiles Drug Subs. 16, 611-639 (1986).
Properties: Colorless crystals, mp 304-305°. uv max (methanol): 298 nm (e 23330). Fluorescence max in acid soln: 370 nm (310 nm excitation). Max soly in water at pH 2.2: 3.84%. Soluble in DMF, DMSO. Slightly soluble in alcohols, esters, chlorinated hydrocarbons. LD50 in mice, rats, rabbits (g/kg): 3.6, 3.1, >3.8 orally (Robinson).
Melting point: mp 304-305°
Absorption maximum: uv max (methanol): 298 nm (e 23330)
Toxicity data: LD50 in mice, rats, rabbits (g/kg): 3.6, 3.1, >3.8 orally (Robinson)
Derivative Type: Hypophosphite
CAS Registry Number: 28558-32-9
Trademarks: Arbotect (Syngenta)
Properties: Amber liquid. d25 1.103.
Density: d25 1.103
Use: Fungicide for spoilage control of citrus fruit; for treatment and prevention of Dutch elm disease in trees; for control of fungal diseases of seed potatoes.
Therap-Cat: Anthelmintic (Nematodes).
Therap-Cat-Vet: Anthelmintic, fungicide.
Keywords: Anthelmintic (Nematodes).

Thiabendazole, 2-(4′-thiazolyl)-benzimidazole (TBZ) (I) is an important anthelmintic and fungicidal agent widely used in pharmaceutical, agriculture and food industry. Owing to the commercial importance of thiabendazole, the various synthetic routes are disclosed in the literature for preparing this pharmacologically and fungicidally active compound.

The various literature discloses the synthesis of thiabendazole by using aniline, 4-cyanothiazole and hydrogen chloride in polychlorobenzene such as dichloro- or a trichlorobenzene solvent under high pressure reaction conditions to obtain N-phenyl-(thiazole-4-amidine)-hydrochloride (amidine hydrochloride). This amidine hydrochloride is then treated with hypohalites such as sodium or potassium hypochlorite, sodium hypobromite and calcium hypochlorite in presence of base such as alkali or alkaline earth metal hydroxides such as sodium hydroxide, potassium hydroxide, calcium hydroxide; or an alkali metal carbonate or bicarbonate such sodium carbonate, sodium bicarbonate to obtain thiabendazole.

NMR

The US patent no. US 3,274,208 discloses the process for preparation of amidine hydrochloride by reacting 4-cynothiazole and aniline in presence of aluminum chloride at 180 °C. The amidine hydrochloride is purified by acid base treatment.

The US patent no. US 3,299,081 (henceforth patent ‘081) discloses the process for preparation of N-phenyl-(thiazole-4-amidine)-hydrochloride (amidine hydrochloride) and thiabendazole by heating together 4-cyanothiazole and aniline hydrochloride and purging of excess dry hydrogen chloride gas under pressure (15 psig) reaction condition in a 1,2-dichlorobenzene solvent at 135 to 140 °C using closed reactor. The amidine hydrochloride is isolated by filtration and it is then cyclized to N-chloro-N’-phenyl-(thiazole-4-amidine) intermediate by reaction with sodium hypochlorite in water-methanol solvent, further the intermediate is then converted to thiabendazole by treatment with potassium hydroxide in ethanol. The preferred embodiment of the said patent discloses the use of excess hydrogen chloride in a polychlorobenzene medium to achieve higher yields of amidine hydrochloride. The reaction with gas under pressure is exothermic, so the reaction is unsafe.

As per the background of the patent ‘081, the prior art processes were disclosed that the N-aryl amidines could be prepared by reacting together a nitrile and an aromatic amine in the presence of a metal catalyst such as aluminum chloride or zinc chloride. The process involved the use of a metallic halide as an additional substance in the reaction mixture with the result that metal complexes are obtained which have to be decomposed and the metal removed before pure amidine compounds can be recovered. It was also known to prepare N-aryl amidines by reacting the nitrile and the aromatic amine hydrochloride in a solvent such as ether in the absence of metallic halide. The process referred to affords only poor yields of the desired amidine. Hence, neither of these methods are entirely satisfactory.

13C NMR

The US patent no. US 3,299,082 discloses the process for preparation of N-phenyl-(thiazole-4-amidine)-hydrochloride (amidine hydrochloride) by reacting aniline and 4-cyanothiazole in in the presence of a Friedel Crafts type catalyst such as aluminum chloride at temperature 180 °C. The amidine hydrochloride is reacted with hydroxylamine hydrochloride, in presence of base such as sodium bicarbonate and water as solvent to obtain N-phenyl-(thiazole-4-hydroxyamidine) which is then treated with alkyl or aryl sulfonyl halide such methane sulfonyl chloride in the presence of a base such as pyridine to obtain thiabendazole.

The US patent no. US 3,325,506 discloses the process for preparation of thiabendazole by reacting amidine hydrochloride with hypohalites such as sodium or potassium hypochlorite, sodium hypobromite and calcium hypochlorite in presence of base such as alkali or alkaline earth metal hydroxides such as sodium hydroxide, potassium hydroxide, calcium hydroxide; or an alkali metal carbonate or bicarbonate such sodium carbonate, sodium bicarbonate in water or mixtures of water and organic solvents to obtain thiabendazole.

The significance of by-products from reactions in process development work arises from the need to control or eliminate their formation which might affect product cost, process safety, product purity and environmental health. Very few reactions go to 100% completion in the desired sense. Even when conversion is 100% selectivity is not 100%. Most reactions are accompanied by by-products which arise as a direct consequence of a primary synthetic step including work-up and isolation and as a result of various types of side reactions. By-products from the latter type also include tars, polymeric materials, and coloring matters. The level of some by-products from side reactions depends frequently on the batch size.

MASS

In the pharmaceutical industry, an impurity is considered as any other inorganic or organic material, or residual solvents other than the drug substances, or ingredients, arise out of synthesis or unwanted chemicals that remains with APIs. Organic impurities are those substances which are formed in the drug substance during the process of synthesis of drug product or even formed during the storage of drug product. This type of impurity includes-intermediate, starting material, degradation product, reagents, ligands, catalyst and by product. Inorganic impurities present mainly include heavy metals, residual solvents, inorganic salts, filter aids, charcoal, reagent, ligands and catalyst.

Impurity profiling includes identification, structure elucidation and quantitative determination of impurities and degradation products in bulk drug materials and pharmaceutical formulations. Impurity profiling has gained importance in modern pharmaceutical analysis since an unidentified, potentially toxic impurities are hazardous to health and the presence of unwanted impurities may influence bioavailability, safety and efficacy of APIs. Now days, not only purity profile but also impurity profile has become mandatory according to various regulatory authorities. The International Conference on Harmonization (ICH) has published guidelines on impurities in new drug substances, products, and residual solvents.

IR

The prior art processes for preparing thiabendazole suffer from inherent drawbacks and inconveniences, such as low yields, additional reaction steps, high-pressure and unsafe reaction conditions. Moreover, the prior art processes for preparation of thiabendazole are end up with surplus level of potential impurities such as 4-chloro thiabendazole (V) or 5-chloro thiabendazole (VI). Also, the prior processes are silent about these impurities. Since, the strict regulations of the regulatory authorities pertaining to the presence of impurities in the active ingredient, it is highly essential to align the research inline with the guidelines of the regulatory authorities in accordance to appropriate regulations and limits to register and commercialize the product in respective countries.

(V) (VI)

Hence, with objective of developing the short process, more direct and less expensive methods, significant improvement in the art for preparation of thiabendazole with controlled level of 4-chloro thiabendazole or 5-chloro thiabendazole impurities, residual solvents (methanol, benzene) and heavy metals (selenium, cobalt, molybdenum), the inventors of the instant invention are motivated to pursue the research to synthesize thiabendazole in under atmospheric conditions with high yield and high chemical purity for agricultural and pharmaceutical use.

CLIP

FIGURE 1

http://www.inchem.org/documents/jecfa/jecmono/v31je04.htm

Uses

Preservative

It is used primarily to control moldblight, and other fungal diseases in fruits (e.g. oranges) and vegetables; it is also used as a prophylactic treatment for Dutch elm disease.

Use in treatment of aspergillosis has been reported.[2]

Used in anti-fungal Purple wallboards (optiSHIELD AT, mixture of azoxystrobin and thiabendazole).

Parasiticide

As an antiparasitic, it is able to control roundworms (such as those causing strongyloidiasis),[3] hookworms, and other helminth species which attack wild animals, livestock and humans.[4]

Angiogenesis inhibitor

Genes responsible for the maintenance of cell walls in yeast have been shown to be responsible for angiogenesis in vertebrates. Tiabendazole serves to block angiogenesis in both frog embryos and human cells. It has also been shown to serve as a vascular disrupting agent to reduce newly established blood vessels. Tiabendazole has been shown to effectively do this in certain cancer cells.[5]

Pharmacodynamics

TBZ works by inhibition of the mitochondrial, helminth-specific enzyme, fumarate reductase, with possible interaction with endogenous quinone.[6]

Other

Medicinally, thiabendazole is also a chelating agent, which means it is used medicinally to bind metals in cases of metal poisoning, such as leadmercury, or antimony poisoning.

In dogs and cats, thiabendazole is used to treat ear infections.

Thiabendazole is also used as a food additive,[7][8] a preservative with E number E233 (INS number 233). For example, it is applied to bananas to ensure freshness, and is a common ingredient in the waxes applied to the skins of citrus fruits. It is not approved as a food additive in the EU,[9] Australia and New Zealand.[10]

Safety

The substance appears to have a slight toxicity in higher doses, with effects such as liver and intestinal disorders at high exposure in test animals (just below LD50 level).[citation needed] Some reproductive disorders and decreasing weaning weight have been observed, also at high exposure. Effects on humans from use as a drug include nausea, vomiting, loss of appetite, diarrhea, dizziness, drowsiness, or headache; very rarely also ringing in the ears, vision changes, stomach pain, yellowing eyes and skin, dark urine, fever, fatigue, increased thirst and change in the amount of urine occur.[citation needed] Carcinogenic effects have been shown at higher doses.[11]

Synthesis

Thiabendazole synthesis:[12] L. H. Sarett, H. D. Brown, U.S. Patent 3,299,081 (1967 to Merck & Co.).

Intermediate arylamidine 2 is prepared by the dry HCl catalyzed addition of aniline to the nitrile function of 4-cyanothiazole (1). Amidine (2) is then converted to its N-chloro analog 3by means of NaOCl. On base treatment, this apparently undergoes a nitrene insertion reaction (4) to produce thiabendazole (5). Note the direction of the arrow is from the benzene to the nitrene since the nitrene is an electrophilic species.

Alternative route of synthesis: 4-thiazolecarboxamide with o-phenylenediamine in polyphosphoric acid.[13]

Synthesis of labeled thiabendazole:[14]

Analogues

Cambendazole preparation and activity studies:[15][16]

Cambendazole (best of 300 agents in an extensive study),[17] is made by nitration of tiabendazole, followed by catalytic hydrogenation to 2, and acylation with Isopropyl chloroformate.

Additionally, tiabendazole was noted to exhibit moderate anti-inflammatory and analgesic activities, which led to the development of KB-1043.

PATENT

WO-2019016834

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019016834&tab=PCTDESCRIPTION&maxRec=1000

The present invention relates to an improved process for preparing thiabendazole of formula (I) with high yield, high purity, in economical and commercially viable manner for agricultural and pharmaceutical use.

front page image

Process for preparing thiabendazole with higher yield, purity, in an economical and commercially viable manner. Thiabendazole is an important anthelmintic and fungicidal agent widely used in pharmaceutical, agriculture and food industry. Represents the first filing from the Hikal Ltd and the inventors on thiabendazole.

The structural details of the 4-chloro thiabendazole (V) and 5-chloro thiabendazole (VI) impurities are as follow.

1. 4-Chloro thiabendazole:

(a) FT-IR study: The FT-IR spectrum was recorded in the KBr pellet using ABB FTLA-2000 FT-IR Spectrometer. The IR data is tabulated below.

Frequency (cm“1) Assignment (s)

1576.37 C=C stretching

1309.16 C-N stretching

3073.38 N-H stretching

(b) NMR spectral data:

NMR experiment was carried out on 400 MHz Bruker spectrometer using DMSO as solvent. The chemical shifts are reported on the δ scale in ppm relative DMSO at 2.5 ppm. The 1H spectra displayed in respectively. The NMR assignment of 4-chloro thiabendazole is shown below.

Proton assignments of 4-Chloro thiabendazole:

s-singlet, d-doublet, t -triplet, q- quartet, dd-doublet of doublet, br-broad, m-multiplet.

2. 5-Chloro thiabendazole:

(a) FT-IR study:

The FT-IR spectrum was recorded in the KBr pellet using ABB FTLA- 2000 Spectrometer. The IR data is tabulated below.

(b) NMR spectral data:

NMR experiment was carried out on 400 MHz Bruker spectrometer using DMSO-d6 as solvent. The chemical shifts are reported on the δ scale in ppm relative DMSO-d6 at 2.50

ppm. The 1H spectra displayed in respectively. The NMR assignment of 5-chloro thiabendazole is shown below.

Proton assignments 5-Chloro thiabendazole:

s-singlet, d-doublet, q-quartet m-multiplet, br-broad.

Examples

Example 1: Preparation of amidine hydrochloride (IV)

To the 4-neck, 1 lit RBF, fixed with thermo pocket, condenser and hydrogen chloride (HC1) gas inlet, 100 g (0.908 moles, 1.0 eq) of 4-cyanothiazole, 386 (3.86 V) ml of 1,2-dichlorobenzene and 86.02 (0.924 moles, 1.02 eq) g of aniline were charged. The reaction mass was heated to 55 to 60 °C and hydrogen chloride (HC1) gas was purged till exotherm ceased. Then the temperature of the reaction mass was raised to 135 to 140 °C and again dry HC1 gas was purged till 4-cyanothiazole was reduced to less than 0.2 % (w/w) analyzed by HPLC. The reaction mass was cooled to 45 to 50° C and 500 mL of water was charged and the reaction mass was stirred for half an hour. The pH of the reaction mass was adjusted between 3 to 5 using caustic lye. The reaction mass was filtered through hyflo bed, and bed was washed with 50 (0.5 V) mL of water. The organic layer was separated, and the aqueous layer was charged back to the RBF. 20 g of activated charcoal was added in aqueous layer under stirring at 45 to 50 °C. The reaction mass was heated to 55 to 60 °C and maintained under stirring for 1.0 hour. The reaction mass was filtered through the hyflo bed under

vacuum, and bed was washed with 50 mL of hot water and suck dried till no more filtrate collected. 300-400 mL of water was distilled from the aqueous layer at 55 °C under 50 m bar of vacuum. Then the reaction mass was cooled to 0 to 5 °C and maintained under stirring for 1 hour. The obtain amidine hydrochloride was filtered by using Buckner funnel and suck dried till no more filtrate collected from it. The wet cake was dried under vacuum at 55 to 60 °C to get 189 g (86.83% yield, HPLC purity 99.85%) of amidine hydrochloride.

Example 2: Preparation of thiabendazole (I)

The 5 lit RBF was fixed with over head stirrer, thermo pocket, condenser and addition funnel. 185 g (0.772 moles, 1.0 eq.) of amidine hydrochloride and 1536 mL (7.33V) of water were charged. The reaction mass was cooled to 0 to 5 °C. 1233 mL of methanol was added to the mass and the pH of the reaction mass was adjusted between 9 to 10 by using 5N sodium carbonate solution. The reaction mass was warmed to 10 to 15 °C and 415.35 g (12.57 % w/w, 0.91 eq.) sodium hypochlorite was slowly added by maintaining temperature between 10 to 15 °C. The reaction mass was stirred at same temperature for half an hour. Then the reaction mass was heated to 60 to 65 °C and 46.15 g (12.57 % w/w, 0.1 eq) sodium hypochlorite was added. The reaction mass was stirred at 60 to 65 °C for 1.0 hour and the reaction mass was cooled to 30 to 40 °C. The reaction mass was filtered, the bed was washed with 925 mL of water (5.0 V) and suck dried for 10 minutes to get 238 g (152 g on dry basis, 97.82 % yield, HPLC purity 99.77%) of thiabendazole.

Example 3: Purification of thiabendazole (I)

The 5 lit RBF was fixed with over head stirrer, thermo pocket, condenser and addition funnel. 224 g of wet crude thiabendazole (145 g on dry basis) was charged at 25 to 30 °C. 2392 mL (16.5 V) of water was charged and the reaction mass was heated to 75 to 80 °C. The pH of the reaction mass was adjusted between 1 to 2 by adding concentrated hydrochloride. Then 21.75 g (15 %, w/w) activated charcoal was added and the reaction mass was stirred for 1.0 hour at 75 to 80 °C. The reaction mass was filtered through hyflo bed and the bed was washed with 1445 mL (1.0 V) of hot water. The aqueous layer was charged back to clean RBF and cooled to 0 to 5 °C and stirred for 10 hours. The solid was filtered and suck dried under vacuum to get 224 g wet cake of thiabendazole hydrochloride (135 g on dry basis).

1261 niL (10 V w.r.t dry thiabendazole hydrochloride) was charged and then 224 g wet cake of thiabendazole hydrochloride was added. The reaction mass was heated to 70 to 80 °C and maintained under stirring for half an hour to get clear solution. The pH of the reaction mass was adjusted to 7 to 8 by using liquor ammonia. The reaction mass was cooled to 25 to 30 °C and stirred for 1.0 hour. The reaction mass was filtered, and the wet cake was slurry washed twice with 1350 mL (10V x 2 times). Then the bed was washed with 675 mL (5.0 V) water. The solid was dried under vacuum at 60 to 70 °C to afford 119 g (79.33% yield, HPLC purity 99.96%) of pure thiabendazole.

CLIP

Fig. 5 Raman spectrum of solid thiabendazole, and SERS spectra of ethanol – water solutions on a re-used 3 m m thick Au woodpile array. Spurious bands from impurities are marked with asterisks.

CLIP

Fig. 6 (A) Proton NMR spectrum of thiabendazole in DMSO-d 6 solution. (B) Plots of normalized selective relaxation rate enhancements of H1/ H2, H14, and H12. [TBZ] ¼ 2 Â 10 À3 mol L À1 , [DNA] ¼ 1, 2, 5, 10, 20 Â 10 À5 mol L À1 , pH ¼ 7.4, T ¼ 298 K. (C) Equilibrium constant of the TBZ-DNA system. [DNA] ¼ 2 Â 10 À5 mol L À1 , [TBZ] ¼ 2, 2.5, 3, 3.5, 4 Â 10 À3 mol L À1 , pH ¼ 7.4, T ¼ 298 K.

CLIP

Thiabendazole has been prepared by heating thiazole-4-carboxamide and benzene-1,2-diamine in polyphosphoric acid (Scheme 13) (1961JA(83)1764). An alternative synthesis involves 4-carboxythiazole (CA 162 590253 (2015), CA 62 90958 (1964)) or 4-cyanothiazole (CA 130 110264 (1996), CA 121 57510 (1994)) as starting materials. A different approach to the synthesis of thiabendazole has been described starting from N-arylamidines; in the presence of sodium hypochlorite and a base, N-arylamidine hydrochlorides are transformed to benzimidazoles via formation of N-chloroamidine intermediate followed by ring closure in a stepwise or concerted mechanism (1965JOC(30)259).

CLIP

One Pot Benzimidazole Synthesis.

A recent report (1) from workers at Chonnam National University (Gwangju, Korea)  describes a benzimidazole synthesis which:

  • produces good product yields (40-98%, for about 30 examples)
  • and proceeds in one pot from three readily available components: sodium azide, an aldehyde, and 2-haloanilines
  • shows good functional group tolerance(nitro-, ester-, chloro-, and various heterocyclic functionalities on the aldehyde or haloaniline component).

Kim-et-al-benzimidazole-JOC-20122

The Benzimidazole Synthesis of Lee and coworkers (1)

Naturally, there are many established ways to synthesize benzimidazoles, which are important substances used in the design of bioactive substances (2).  Recent work has sought to address specific drawbacks associated with these methods, which can include harsh reaction conditions and complicated product mixtures.

Further developments have focused on the use of 2-haloacetanilides, 2-haloarylamidines, arylamino oximes, and N-arylbenzimidamides (3).  This work notable due to the useful anthelmintic properties. Anthelmintic agents work to kill or repel intestinal worms. A review (3) discusses the synthesis of benzimidazoles, and cites the breakthrough discovery of thiabendazole by researchers at Merck in 1961.  Thiabendazole was found to have potent broad spectrum activity against gastrointestinal parasites.

thiabendazole

Early thiabendazole synthesis (3)

The initial synthesis of thiabendazole occured via dehydrative cyclization of 1,2 diaminobenzenze in polyphosphoric acid (PPA). The commercialized process involved the conversion of N-arylamidines using hypochlorite (4). Although this process can be performed in ‘one-pot’ fashion it is more typically performed in two steps.

The ‘one-pot’ benzimidazole synthesis described by Lee et. Al. is showcased by its ability to produce thiabendazole in one step, from readily available starting materials (2-haloanilines, thiazole-4-carboxaldehyde) – in 97% yield.

Their work builds on the report of Driver and coworkers (5) that showed that benzimidazoles could be had from 2-azidoanilines in good yield. Indeed, Lee proposes a mechanism that produces an azidoaldimine intermediate, which foregoes the multistep preparation of 2-azidoaniline starting materials.

One proposed mechanistic pathway is shown, with the following steps:

  • initial in situ formation of an aldimine, via addition of aniline to an aldehyde;
  • Ar-X insertion of the copper catalyst;
  • Cu-azide association, with transfer of azide to the aromatic ring;
  • loss of nitrogen with concomitant ring formation, and catalyst regeneration

benzimidazolw-mechanism-Lee1One mechanistic explanation proposed by Lee and coworkers (1).

In developing their method, they investigated a number of factors:

  • Solvent.  DMSO outperformed other polar solvents (NMP, DMF, DMAc).  Less polar solvents failed (toluene, diglyme).
  • Source of Copper catalyst. The oxidation state of copper was not a factor, as Cu(I) and Cu(II) salts showed similar performance.
  • Ligand Evaluation. Ligand selection was not a large factor. Several were tested; ultimately TMEDA was selected.
  • Substituents on the aniline / pyridyl component. Base sensitive substituents were tolerated (benzoate ester) and 3-Cl groups were fine. The sensitivity to a broad range of substituents (the usual EWD- and ED-groups) was not rigorously determined
  • Nature of the haloaniline. Although both bromo- and iodoaniline examples were given, the predominance of iodoaniline examples suggests it was prefered by the authors for unstated reasons.
  • Reactivity of various aldehyde reactants. Aldehydes of varying classes were evaluated. Yields from aromatic substrates bearing ED groups(benzaldehyde, 4-Cl benzaldehyde, 4-methoxybenzaldehyde) produced the highest product yields.  Aliphatic aldehydes produced noticeably lower yields, with the curious exception of pivaldehyde. Several heterocyclic aldehydes (2- furyl- and 2-thionylaldehyde were tested and provided good results.

A synopsis of the Lee Procedure follows:

CuCl (0.1 mmol), haloaniline (2.0 mmol), TMEDA (0.1 mmol), NaN3 (4.0 mmol), aldehyde (2.4 mmol) were combined in DMSO  mL), The mixture was heated at 120 C for 12 hours. After cooling to room temperature the mixture was poured onto EtOAc (50 mL), washed with brine (25 mL) and water (25 mL). The organic phase was dried over Mg2SO4, and the residue from evaporation was purified by column chromatography (1:1 hexane / EtOAc mobile phase).

Artie McKim.

(1) Kim, Y.; Kumar, M.R.; Park, N.; Heo, Y.; Lee, S. J. Org. Chem. 201176, 9577-9583.
(2) Tumulty, D.; Cao, K.; Homes, C.P. Org Lett. 2001, 3, 83.; Wu, Z. Rea. P.; Wickham, G.; Tetrahedron Lett. 200041, 9871.;  Chari, M.A.; Shobha, P.S.D.;  Mukkanti, K. J. Heterocycl. Chem.201047, 153.
(3) Townsend, L.B.; Wise, D.S. Parasitology Today 6, 4 (1990) 107-112.
(4) Grenda, V. J.; Jones, R.E; Gal,G.; Sletzinger J. Org Chem. 30 (1965), 259-261.
(5) Shen, M.; Driver, T.G. Org Lett. 200810, 3367.

References

  1. ^ “E233 : E Number : Preservative”http://www.ivyroses.com. Retrieved 2018-08-28.
  2. ^ Upadhyay MP, West EP, Sharma AP (January 1980). “Keratitis due to Aspergillus flavus successfully treated with thiabendazole”Br J Ophthalmol64 (1): 30–2. doi:10.1136/bjo.64.1.30PMC 1039343PMID 6766732.
  3. ^ Igual-Adell R, Oltra-Alcaraz C, Soler-Company E, Sánchez-Sánchez P, Matogo-Oyana J, Rodríguez-Calabuig D (December 2004). “Efficacy and safety of ivermectin and thiabendazole in the treatment of strongyloidiasis”Expert Opin Pharmacother5 (12): 2615–9. doi:10.1517/14656566.5.12.2615PMID 15571478. Archived from the original on 2016-03-06.
  4. ^ Portugal R, Schaffel R, Almeida L, Spector N, Nucci M (June 2002). “Thiabendazole for the prophylaxis of strongyloidiasis in immunosuppressed patients with hematological diseases: a randomized double-blind placebo-controlled study”Haematologica87 (6): 663–4. PMID 12031927.
  5. ^ Cha, HJ; Byrom M; Mead PE; Ellington AD; Wallingford JB; et al. (August 2012). “Evolutionarily Repurposed Networks Reveal the Well-Known Antifungal Drug Thiabendazole to Be a Novel Vascular Disrupting Agent”PLoS Biology10 (8): e1001379. doi:10.1371/journal.pbio.1001379PMC 3423972PMID 22927795. Retrieved 2012-08-21.
  6. ^ Gilman, A.G., T.W. Rall, A.S. Nies and P. Taylor (eds.). Goodman and Gilman’s The Pharmacological Basis of Therapeutics. 8th ed. New York, NY. Pergamon Press, 1990., p. 970
  7. ^ Rosenblum, C (March 1977). “Non-Drug-Related Residues in Tracer Studies”. Journal of Toxicology and Environmental Health2 (4): 803–14. doi:10.1080/15287397709529480PMID 853540.
  8. ^ Sax, N.I. Dangerous Properties of Industrial Materials. Vol 1-3 7th ed. New York, NY: Van Nostrand Reinhold, 1989., p. 3251
  9. ^ UK Food Standards Agency: “Current EU approved additives and their E Numbers”. Retrieved 2011-10-27.
  10. ^ Australia New Zealand Food Standards Code“Standard 1.2.4 – Labelling of ingredients”. Retrieved 2011-10-27.
  11. ^ “Reregistration Eligibility Decision THIABENDAZOLE” (PDF). Environmental Protection Agency. Retrieved 8 January 2013.
  12. ^ Setzinger, Meyer; Painfield, North; Gaines, Water A.; Grenda, Victor J. (1965). “Novel Preparation of Benzimidazoles from N-Arylamidines. New Synthesis of Thiabendazole1”. The Journal of Organic Chemistry30: 259–261. doi:10.1021/jo01012a061.
  13. ^ Brown, H. D.; Matzuk, A. R.; Ilves, I. R.; Peterson, L. H.; Harris, S. A.; Sarett, L. H.; Egerton, J. R.; Yakstis, J. J.; Campbell, W. C.; Cuckler, A. C. (1961). “Antiparasitic Drugs. Iv. 2-(4′-Thiazolyl)-Benzimidazole, A New Anthelmintic”. Journal of the American Chemical Society83 (7): 1764–1765. doi:10.1021/ja01468a052.
  14. ^ Tocco, D. J.; Buhs, R. P.; Brown, H. D.; Matzuk, A. R.; Mertel, H. E.; Harman, R. E.; Trenner, N. R. (1964). “The Metabolic Fate of Thiabendazole in Sheep1”. Journal of Medicinal Chemistry7 (4): 399–405. doi:10.1021/jm00334a002.
  15. ^ Hoff, Fisher, ZA 6800351 (1969 to Merck & Co.), C.A. 72, 90461q (1970).
  16. ^ Hoff, D. R.; Fisher, M. H.; Bochis, R. J.; Lusi, A.; Waksmunski, F.; Egerton, J. R.; Yakstis, J. J.; Cuckler, A. C.; Campbell, W. C. (1970). “A new broad-spectrum anthelmintic: 2-(4-Thiazolyl)-5-isopropoxycarbonylamino-benzimidazole”. Experientia26 (5): 550–551. doi:10.1007/BF01898506.
  17. ^ Chronicles of Drug Discovery, Book 1, pp 239-256.
Tiabendazole
Thiabendazole.svg
Thiabendazole ball-and-stick.png
Clinical data
Trade names Mintezol, others
AHFS/Drugs.com International Drug Names
Pregnancy
category
Routes of
administration
By mouthtopical
ATC code
Legal status
Legal status
  • AU: S4 (Prescription only)
  • In general: ℞ (Prescription only)
Pharmacokinetic data
Bioavailability Сmax 1–2 hours (oral administration)
Metabolism GI tract
Elimination half-life 8 hours
Excretion Urine (90%)
Identifiers
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
NIAID ChemDB
ECHA InfoCard 100.005.206 Edit this at Wikidata
Chemical and physical data
Formula C10H7N3S
Molar mass 201.249 g/mol
3D model (JSmol)
Density 1.103 g/cm3
Melting point 293 to 305 °C (559 to 581 °F)

Synthesis Reference

Lynn E. Applegate, Carl A. Renner, “Preparation of high purity thiabendazole.” U.S. Patent US5310923, issued October, 1977.

US5310923

/////////////////MK 360MK-360NSC-525040,  NSC-90507, チアベンダゾール, TIABENDAZOLE, тиабендазол , تياباندازول , 噻苯达唑 , 

Viloxazine, ヴィロキサジン;

$
0
0

Viloxazine structure.svg

ChemSpider 2D Image | Viloxazine | C13H19NO3

Viloxazine

  • Molecular FormulaC13H19NO3
  • Average mass237.295 Da
2-[(2-Ethoxyphenoxy)methyl]morpholine
256-281-7 [EINECS]
3489
46817-91-8 free [RN], Hcl 35604-67-2
5I5Y2789ZF
Emovit [Wiki]
Morpholine, 2-((2-ethoxyphenoxy)methyl)-
Morpholine, 2-[(2-ethoxyphenoxy)methyl]-
UNII:5I5Y2789ZF
Viloxazine hydrochloride.png
Viloxazine hydrochloride OQW30I1332 35604-67-2

Polymorph

FORM A , B US226136693US2011032013

Viloxazine (trade names VivalanEmovitVivarint and Vicilan) is a morpholine derivative and is a selective norepinephrine reuptake inhibitor (NRI). It was used as an antidepressant in some European countries, and produced a stimulant effect that is similar to the amphetamines, except without any signs of dependence. It was discovered and brought to market in 1976 by Imperial Chemical Industries and was withdrawn from the market in the early 2000s for business reasons.

Image result for viloxazine synthesis

Clip

https://www.sciencedirect.com/science/article/pii/S0040402015302659

Image result for viloxazine synthesis

Patent

US 20180265482

https://patentscope.wipo.int/search/en/detail.jsf?docId=US226136693&tab=PCTDESCRIPTION&maxRec=1000

 Viloxazine ((R,S)-2-[(2-ethoxyphenoxy)methyl]morpholine]) is a bicyclic morpholine derivative, assigned CAS No. 46817-91-8 (CAS No. 35604-67-2 for the HCl salt). It is characterized by the formula C 1319NO 3, with a molecular mass of 237.295 g/mol. Viloxazine has two stereoisomers, (S)-(−)- and (R)-(+)-isomer, which have the following chemical structures:
      Viloxazine is known to have several desirable pharmacologic uses, including treatment of depression, nocturnal enuresis, narcolepsy, sleep disorders, and alcoholism, among others. In vivo, viloxazine acts as a selective norepinephrine reuptake inhibitor (“NRI”).
      Between the two stereoisomers, the (S)-(−)-isomer is known to be five times as pharmacologically active as the (R)-(+)-isomer. See, e.g., “Optical Isomers of 2-(2-ethoxyphenoxymethyl)tetrahydro-1,4 oxazine (viloxazine) and Related Compounds” (Journal of Medicinal Chemistry, Jan. 9, 1976, 19(8); 1074) in which it is disclosed that optical isomers of 2-(2-ethoxyphenoxymethyl)tetrahydro-1,4-oxazine (viloxazine) and 2-(3-methoxyphenoxymethyl)tetrahydro-1,4-oxazine were prepared and absolute configurations assigned. The synthesis of optical isomers of viloxazine analogs of known configuration was accomplished by resolution of the intermediate 4-benzyl-2-(p-toluenesulfonyloxymethyl)tetrahydro-1,4-oxazine isomers.
      Some unsatisfactory methods of synthesizing viloxazine are known in the art. For example, as disclosed in U.S. Pat. No. 3,714,161, viloxazine is prepared by reacting ethoxyphenol with epichlorohydrin to afford the epoxide intermediate 1-(2-ethoxyphenoxy)-2,3-epoxypropane. This epoxide intermediate is then treated with benzylamine followed with chloroacetyl chloride. The resulting morpholinone is then reduced by lithium aluminum hydride and then by Pd/C-catalyzed hydrogenation to yield viloxazine free base.
      Yet another unsatisfactory synthesis of viloxazine is disclosed in U.S. Pat. No. 3,712,890, which describes a process to prepare viloxazine HCl, wherein the epoxide intermediate, 1-(2-ethoxyphenoxy)-2,3-epoxypropane, is reacted with 2-aminoethyl hydrogen sulfate in ethanol in the presence of sodium hydroxide to form viloxazine free base. The product is extracted with diethyl ether from the aqueous solution obtained by evaporating the solvent in the reaction mixture then adding water to the residue. The ethereal extract is dried over a drying agent and the solvent is removed. Viloxazine HCl salt is finally obtained by dissolving the previous residue in isopropanol, concentrated aqueous HCl, and ethyl acetate followed by filtration.
      The foregoing methods of synthesizing viloxazine suffer from a number of deficiencies, such as low reaction yield and unacceptably large amount of impurities in the resulting product. Effective elimination or removal of impurities, especially those impurities possessing genotoxicity or other toxicities, is critical to render safe pharmaceutical products. For example, certain reagents traditionally utilized in viloxazine HCl preparation, such as epichlorohydrin and 2-aminoethyl hydrogen sulfate, present a special problem due to their toxicity. There is a need for effective methods to remove or limit harmful impurities down to a level that is appropriate and safe according to contemporary sound medical standards and judgment. Accordingly, a continuing and unmet need exists for new and improved methods of manufacturing viloxazine and its various salts to yield adequate quantities of pharmacologically desirable API with predictable and reliable control of impurities.
     Polymorph control is also an important aspect of producing APIs and their associated salts that are used in pharmaceutical products. However, no polymorphs of viloxazine HCl have previously been disclosed. A need therefore exists for new polymorphic forms of viloxazine that have improved pharmacological properties.

PATENT

WO 2011130194

US2011032013

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2011130194&recNum=110&docAn=US2011032013&queryString=(%20pheno*%20or%20isopropoxy*%20or%20oxiran*%20or%20bisoprolol*%20)%20and%20(%20C07C213*%20or%20C07C217*%20or%20C07C209*%20or%20C07C41*%20or%20C07D263*%20)&maxRec=2245

For the sake of convenience and without putting any limitations thereof, the methods of manufacture of viloxazine have been separated into several steps, each step being disclosed herein in a multiplicity of non-limiting embodiments. These steps comprise Step 1, during which 2-ethoxyphenol and epichlorhydrin are reacted to produce l-(2-ethoxyphenoxy)-2,3-epoxypropane (Epoxide 1); Step 2, during which l-(2-ethoxyphenoxy)-2,3-epoxypropane (Epoxide 1) is converted into viloxazine base which is further converted into viloxazine salt, and Step 3, during which viloxazine salt is purified/recrystallized, and various polymorphic forms of viloxazine salt are prepared.

The above-mentioned steps will be considered below in more details.

[0031] The process of the Step 1 may be advantageously carried out in the presence of a phase-transfer catalyst to afford near quantitative yield of l-(2-ethoxyphenoxy)-2,3-epoxypropane. Alternatively, the process may make use of a Finkelstein catalyst described in more details below. Additionally, the reaction may take place without the use of the catalyst.

 FIG. 1, depicted below, schematically illustrates the preparation of l-(2-ethoxyphenoxy)-2,3-epoxypropane (“Epoxide 1”) in accordance with Step I of an exemplary synthesis of viloxazine:

STEP I:

Epoxide 1

In one embodiment of the Step 1, the preparation of l-(2-ethoxyphenoxy)-2,3-epoxypropane (epoxide 1) can be effected by the use of a phase transfer catalyst in the presence of a solid or liquid base with a solution of a corresponding phenol and epichlorohydrin in one or more solvents (Fig. 1). The phase transfer catalyst can be selected from ammonium salts, such as benzyltriethylammonium salts, benzyltrimethylammonium salts, and tetrabutylammonium salts, phosphonium salts, guanidinium salts, crown ether, polyethylene glycol, polyethylene glycol ether, or polyethylene glycol ester, or other phase transfer catalysts know in the art. The solid or liquid base can be a carbonate such as alkali carbonate, NaOH, KOH, LiOH, LiOH/LiCl, amines such as mono-, di- or tri-substituted amines (such as diethylamine, triethylamine, dibutylamine, tributylamine), DMAP, or other appropriate base. The solvents used in the solution of a corresponding phenol and epichlorohydrin include but are not limited to ethers such as methyl t-butyl ether, ketones, non-substituted or substituted aromatic solvents (xylene), halo-substituted hydrocarbons (e.g. CH2C12, CHC13), THF, DMF, dioxanes, non-substituted and substituted pyridines, acetonitrile, pyrrolidones, nitromethane , or other appropriate solvent. Additional catalyst, such as, for example, Finkelstein catalyst, can also be used in the process of this embodiment. This reaction preferably takes place at an elevated temperature. In one variation of the embodiment, the temperature is above 50°C. In another variation, epichlorohydrin, potassium carbonate, and a phase transfer catalyst are mixed with a solution of 2-ethoxyphenol in a solvent at an elevated temperature, such as 50 – 60°C. After the reaction is complete, the reaction mixture can be washed with water, followed by work-up procedures known in the art. Variations of this embodiment of the invention are further disclosed in Examples 1-8.

[0033] In one variation of the above embodiment of the Step 1 , Epoxide 1 is prepared by reacting 2-ethoxyphenol and epichlorohydrin in a solvent in the presence of two different catalysts, and a base in a solid state. The first catalyst is a phase transfer catalyst as described above; the second catalyst is a Finkelstein reaction catalyst. Without putting any limitation

hereon, metal iodide and metal bromide salts, such as potassium iodide, may be used as an example of a Finkelstein catalyst. The phase transfer catalyst and a solvent may be selected from any phase transfer catalysts and solvents known in the art. Potassium carbonate may be used as a non-limiting example of a solid base. Using the solid base in a powdered form may be highly beneficial due to the greatly enhanced interface and limiting the side reactions. This variation of the embodiment is further illustrated by Example 9. In another variation of the embodiment, liquid base such as triethylamine can be used to replace the solid base.

[0034] In a different embodiment of Step 1 , 2-ethoxyphenol and epichlorohydrin are reacted in a solvent-free system that comprises a solid or liquid base, a phase transfer catalyst as listed above and a Finkelstein catalyst.

[0035] FIG. 2, depicted below, schematically illustrates the preparation of l-(2-ethoxyphenoxy)-2,3-epoxypropane (“Epoxide 1”) in accordance with the Step I of another exemplary synthesis of viloxazine ( biphasic):

STEP I (alternative embodiment):

In this embodiment of Step 1, illustrated in Fig. 2, Epoxide 1 can be prepared by reacting epichlorohydrin with 2-ethoxyphenol in the presence of a catalytic amount of a phase transfer catalyst without the use of solvents at elevated temperatures in a two-stage process to afford near quantitative yield of l-(2-ethoxyphenoxy)-2,3-epoxypropane with very few side products. This embodiment of the invention is further illustrated by a non-limiting Example 12. The phase transfer catalyst for this embodiment can be selected from ammonium salts such as benzyltriethylammonium salts, benzyltrimethylammonium salts, tetrabutylammonium salts, etc; phosphonium salts, guanidinium salts, crown ether, polyethylene glycol, polyethylene glycol ether, or polyethylene glycol ester, or other phase transfer catalysts know in the art. The first stage of the process of this embodiment may take place without a solvent in a presence of a large excess of epichlorohydrin. This stage is followed by a de-chlorination stage, before or after

removal of excess epichlorohydrin, using a base and a solvent. The reaction produces l-(2-ethoxyphenoxy)-2,3-epoxypropane in high yield. Example of the bases used herein include but are not limited to NaOH, KOH, LiOH, LiOH/LiCl, K2C03, Na2C03, amines such as mono-, di-or tri-substituted amines (such as diethylamine, triethylamine, dibutylamine, tributylamine etc.), DMAP. In one variation of this embodiment of Step 1, the phase transfer catalyst may be used only at the de-chlorination stage of the process. The de-chlorination stage can be carried out in a biphasic system or in a single phase system. For a biphasic system, it can be an organic-aqueous liquid biphasic system, or a liquid-solid biphasic system. Solvents that are useful for the process include but are not limited to non-substituted and substituted aromatic solvents (e.g. toluene, benzene, chlorobenzene, dimethylbenzene, xylene), halo-substituted hydrocarbons (e.g. CH2C12, CHC13), THF, dioxanes, DMF, DMSO, non-substituted and substituted pyridines, ketones, pyrrolidones, ethers, acetonitrile, nitromethane. As mentioned above, this process takes place at the elevated temperature. In one variation of the embodiment, the temperature is above 60°C. In another variation, 2-ethoxyphenol and epichlorohydrin are heated to 60 – 90°C for a period of time in the presence of phase transfer catalyst. Excess of epichlorohydrin is removed and the residue is dissolved in a solvent such as toluene or benzene treated with an aqueous base solution, such as NaOH, KOH, LiOH, LiOH/LiCl. In yet another variation of the embodiment, the residue after epichlorohydrin removal can be dissolved in one or more of the said solvent and treated with a base (solid or liquid but not an aqueous solution) and optionally a second phase transfer catalyst, optionally at elevated temperatures.

[0036] In yet another embodiment of Step 1 , Epoxide 1 can also be prepared by using a catalyst for a so-called Finkelstein reaction in the presence of a Finkelstein catalyst but without the need to use a phase transfer catalyst. Finkelstein catalysts useful herein include metal iodide salts and metal bromide salts, among others. In one variation of this embodiment, 2-ethoxyphenol and epichlorohydrin are dissolved in a polar aprotic solvent such as DMF, and a catalytic amount of an iodide such as potassium iodide and a base, as solid or liquid, are used. Preferably, the base is used as a solid, such as potassium carbonate powder. This embodiment is further illustrated by the Example 11.

[0037] In the alternative embodiment of Step 1 , Epoxide 1 can also be prepared by a different method that comprises reacting epichlorohydrin and the corresponding phenol in the presence of a base at a temperature lower than the ambient temperature, especially when a base solution is used, and without the use of a phase transfer catalyst. This embodiment is illustrated by the Example 10.

[0038] A very high, almost quantitative, yield of 1 -(2-ethoxyphenoxy)-2,3-epoxypropane can be obtained through realizing the above-described embodiments of Step 1 , with less impurities generated in Epoxide 1.

[0039] Epoxide 1 , produced in Step 1 as described above, is used to prepare viloxazine base (viloxazine), which is further converted into viloxazine salt through the processes of Step 2.

[0040] FIG. 3, depicted below, schematically illustrates the preparation of viloxazine

(“Step Ila”) and the preparation of viloxazine hydrochloride (“Step lib”), as well as their purification (“Step III”) in accordance with another example embodiment hereof:

STEP Ila:

Hydrogen Sulfate

STEP lib:

Step III:

Conversion

Viloxazine free base ► Viloxazine salt

Wash/ raction

Recrystallization

Purified viloxazine salt

In the embodiment of Step 2, illustrated in Fig. 3, the preparation of viloxazine base is achieved by reacting the Epoxide 1 intermediate prepared in Step 1 and aminoethyl hydrogen sulfate in presence of a large excess of a base as illustrated by the Examples 5-7 and 14. The base may be present as a solid or in a solution. Preferably, the molar ratio of the base to Epoxide 1 is more than 10. More preferably the ratio is more than 12. Even more preferably, the ratio is between 15 and 40. It was unexpectedly discovered that the use of a higher ratio of a base results in a faster reaction, less impurities, and lower reaction temperature.

[0041] Further advantages may be offered by a specific variation of this embodiment, wherein the base is added to the reaction mixture in several separate steps. For example, a third of the base is added to the reaction mixture, and the mixture is stirred for a period of time. Then the rest of the base is added followed by additional stirring. Alternatively, half of the base is added initially followed by the second half after some period of time, or the base is added in three different parts separated by periods of time. The bases used herein include but are not limited to NaOH, KOH, LiOH, LiOH/LiCl, K2C03, Na2C03, amines such as mono-, di- or tri-substituted amines (such as diethylamine, triethylamine, dibutylamine, tributylamine), DMAP, and combinations thereof. . In one embodiment of the invention, the base is KOH. In another embodiment, the base is NaOH. In a further embodiment, the base is K2C03 powder. In yet further embodiment, the base is triethylamine. This embodiment is illustrated further by

Examples 13,15 and 16.

[0042] In another exemplary embodiment of Step 2, viloxazine is produced by cyclization of novel intermediate compound “Diol 1 ,” which is made from Epoxide 1 and N-benzyl-aminoethanol. This method allows one to drastically reduce the use of potentially toxic materials in the manufacturing process, completely eliminating some of them such as aminoethyl hydrogen sulfate. The first stage of the reaction results in the formation of an intermediate of Formula 3 (Diol 1), which is a new, previously unidentified compound.

[0043] Formula 3

Diol 1

FIG. 4, depicted below, schematically illustrates the preparation of viloxazine and its salts via “Diol 1” in accordance with another exemplary embodiment hereof (Bn = benzyl, Et = ethyl):

Viloxazine HCI

As illustrated in Fig. 4, Diol 1 is turned into N-benzyl viloxazine by cyclization. Removal of the benzyl protective group yields viloxazine base. Similarly, FIG. 5, depicted below, schematically illustrates the cyclization of Diol 1, as well as some side-reactions thereof.

Uses

Viloxazine hydrochloride was used in some European countries for the treatment of clinical depression.[4][5]

Side effects

Side effects included nausea, vomiting, insomnia, loss of appetite, increased erythrocyte sedimentation, EKG and EEG anomalies, epigastric pain, diarrhea, constipationvertigoorthostatic hypotensionedema of the lower extremities, dysarthriatremor, psychomotor agitation, mental confusion, inappropriate secretion of antidiuretic hormone, increased transaminasesseizure, (there were three cases worldwide, and most animal studies (and clinical trials that included epilepsy patients) indicated the presence of anticonvulsant properties, so was not completely contraindicated in epilepsy,[6]) and increased libido.[7]

Drug interactions

Viloxazine increased plasma levels of phenytoin by an average of 37%.[8] It also was known to significantly increase plasma levels of theophylline and decrease its clearance from the body,[9] sometimes resulting in accidental overdose of theophylline.[10]

Mechanism of action

Viloxazine, like imipramine, inhibited norepinephrine reuptake in the hearts of rats and mice; unlike imipramine, it did not block reuptake of norepinephrine in either the medullae or the hypothalami of rats. As for serotonin, while its reuptake inhibition was comparable to that of desipramine (i.e., very weak), viloxazine did potentiate serotonin-mediated brain functions in a manner similar to amitriptyline and imipramine, which are relatively potent inhibitors of serotonin reuptake.[11] Unlike any of the other drugs tested, it did not exhibit any anticholinergic effects.[11]

It was also found to up-regulate GABAB receptors in the frontal cortex of rats.[12]

Chemical properties

It is a racemic compound with two stereoisomers, the (S)-(–)-isomer being five times as pharmacologically active as the (R)-(+)-isomer.[13]

History

Viloxazine was discovered by scientists at Imperial Chemical Industries when they recognized that some beta blockers inhibited serotonin reuptake inhibitor activity in the brain at high doses. To improve the ability of their compounds to cross the blood brain barrier, they changed the ethanolamine side chain of beta blockers to a morpholine ring, leading to the synthesis of viloxazine.[14]:610[15]:9 The drug was first marketed in 1976.[16] It was never approved by the FDA,[5] but the FDA granted it an orphan designation (but not approval) for cataplexy and narcolepsy in 1984.[17] It was withdrawn from markets worldwide in 2002 for business reasons.[14][18]

As of 2015, Supernus Pharmaceuticals was developing formulations of viloxazine as a treatment for ADHD and major depressive disorder under the names SPN-809 and SPN-812.[19][20]

Research

Viloxazine has undergone two randomized controlled trials for nocturnal enuresis (bedwetting) in children, both of those times versus imipramine.[21][22] By 1990, it was seen as a less cardiotoxic alternative to imipramine, and to be especially effective in heavy sleepers.[23]

In narcolepsy, viloxazine has been shown to suppress auxiliary symptoms such as cataplexy and also abnormal sleep-onset REM[24] without really improving daytime somnolence.[25]

In a cross-over trial (56 participants) viloxazine significantly reduced EDS and cataplexy.[18]

Viloxazine has also been studied for the treatment of alcoholism, with some success.[26]

While viloxazine may have been effective in clinical depression, it did relatively poorly in a double-blind randomized controlled trial versus amisulpride in the treatment of dysthymia.[27]

It is also under investigation as a treatment for attention deficit hyperactivity disorder.[28]

REFERNCES

  1. ^ Bouchard JM, Strub N, Nil R (October 1997). “Citalopram and viloxazine in the treatment of depression by means of slow drop infusion. A double-blind comparative trial”. Journal of Affective Disorders46 (1): 51–8. doi:10.1016/S0165-0327(97)00078-5PMID 9387086.
  2. ^ Case DE, Reeves PR (February 1975). “The disposition and metabolism of I.C.I. 58,834 (viloxazine) in humans”. Xenobiotica5 (2): 113–29. doi:10.3109/00498257509056097PMID 1154799.
  3. ^ “SID 180462– PubChem Substance Summary”. Retrieved 5 November 2005.
  4. ^ Pinder, RM; Brogden, RN; Speight, ™; Avery, GS (June 1977). “Viloxazine: a review of its pharmacological properties and therapeutic efficacy in depressive illness”. Drugs13 (6): 401–21. doi:10.2165/00003495-197713060-00001PMID 324751.
  5. Jump up to:a b Dahmen, MM, Lincoln, J, and Preskorn, S. NARI Antidepressants, pp 816-822 in Encyclopedia of Psychopharmacology, Ed. Ian P. Stolerman. Springer-Verlag Berlin Heidelberg, 2010. ISBN 9783540687061
  6. ^ Edwards JG, Glen-Bott M (September 1984). “Does viloxazine have epileptogenic properties?”Journal of Neurology, Neurosurgery, and Psychiatry47 (9): 960–4. doi:10.1136/jnnp.47.9.960PMC 1027998PMID 6434699.
  7. ^ Chebili S, Abaoub A, Mezouane B, Le Goff JF (1998). “Antidepressants and sexual stimulation: the correlation” [Antidepressants and sexual stimulation: the correlation]. L’Encéphale (in French). 24 (3): 180–4. PMID 9696909.
  8. ^ Pisani F, Fazio A, Artesi C, et al. (February 1992). “Elevation of plasma phenytoin by viloxazine in epileptic patients: a clinically significant drug interaction”Journal of Neurology, Neurosurgery, and Psychiatry55 (2): 126–7. doi:10.1136/jnnp.55.2.126PMC 488975PMID 1538217.
  9. ^ Perault MC, Griesemann E, Bouquet S, Lavoisy J, Vandel B (September 1989). “A study of the interaction of viloxazine with theophylline”. Therapeutic Drug Monitoring11 (5): 520–2. doi:10.1097/00007691-198909000-00005PMID 2815226.
  10. ^ Laaban JP, Dupeyron JP, Lafay M, Sofeir M, Rochemaure J, Fabiani P (1986). “Theophylline intoxication following viloxazine induced decrease in clearance”. European Journal of Clinical Pharmacology30 (3): 351–3. doi:10.1007/BF00541543PMID 3732375.
  11. Jump up to:a b Lippman W, Pugsley TA (August 1976). “Effects of viloxazine, an antidepressant agent, on biogenic amine uptake mechanisms and related activities”. Canadian Journal of Physiology and Pharmacology54 (4): 494–509. doi:10.1139/y76-069PMID 974878.
  12. ^ Lloyd KG, Thuret F, Pilc A (October 1985). “Upregulation of gamma-aminobutyric acid (GABA) B binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock”The Journal of Pharmacology and Experimental Therapeutics235 (1): 191–9. PMID 2995646.
  13. ^ Danchev ND, Rozhanets VV, Zhmurenko LA, Glozman OM, Zagorevskiĭ VA (May 1984). “Behavioral and radioreceptor analysis of viloxazine stereoisomers” [Behavioral and radioreceptor analysis of viloxazine stereoisomers]. Biulleten’ Eksperimental’noĭ Biologii i Meditsiny (in Russian). 97 (5): 576–8. PMID 6326891.
  14. Jump up to:a b Williams DA. Antidepressants. Chapter 18 in Foye’s Principles of Medicinal Chemistry, Eds. Lemke TL and Williams DA. Lippincott Williams & Wilkins, 2012. ISBN 9781609133450
  15. ^ Wermuth, CG. Analogs as a Means of Discovering New Drugs. Chapter 1 in Analogue-based Drug Discovery. Eds.IUPAC, Fischer, J., and Ganellin CR. John Wiley & Sons, 2006. ISBN 9783527607495
  16. ^ Olivier B, Soudijn W, van Wijngaarden I. Serotonin, dopamine and norepinephrine transporters in the central nervous system and their inhibitors. Prog Drug Res. 2000;54:59-119. PMID 10857386
  17. ^ FDA. Orphan Drug Designations and Approvals: Viloxazine Page accessed August 1, 2-15
  18. Jump up to:a b Vignatelli L, D’Alessandro R, Candelise L. Antidepressant drugs for narcolepsy. Cochrane Database Syst Rev. 2008 Jan 23;(1):CD003724. Review. PMID 18254030
  19. ^ Bloomberg Supernus profile Page accessed August 1, 2015
  20. ^ Supernus. Psychiatry portfolio Page accessed August 1, 2015
  21. ^ Attenburrow AA, Stanley TV, Holland RP (January 1984). “Nocturnal enuresis: a study”. The Practitioner228 (1387): 99–102. PMID 6364124.
  22. ^ ^ Yurdakök M, Kinik E, Güvenç H, Bedük Y (1987). “Viloxazine versus imipramine in the treatment of enuresis”. The Turkish Journal of Pediatrics29 (4): 227–30. PMID 3332732.
  23. ^ Libert MH (1990). “The use of viloxazine in the treatment of primary enuresis” [The use of viloxazine in the treatment of primary enuresis]. Acta Urologica Belgica (in French). 58 (1): 117–22. PMID 2371930.
  24. ^ Guilleminault C, Mancuso J, Salva MA, et al. (1986). “Viloxazine hydrochloride in narcolepsy: a preliminary report”. Sleep9 (1 Pt 2): 275–9. PMID 3704453.
  25. ^ Mitler MM, Hajdukovic R, Erman M, Koziol JA (January 1990). “Narcolepsy”Journal of Clinical Neurophysiology7 (1): 93–118. doi:10.1097/00004691-199001000-00008PMC 2254143PMID 1968069.
  26. ^ Altamura AC, Mauri MC, Girardi T, Panetta B (1990). “Alcoholism and depression: a placebo controlled study with viloxazine”. International Journal of Clinical Pharmacology Research10 (5): 293–8. PMID 2079386.
  27. ^ León CA, Vigoya J, Conde S, Campo G, Castrillón E, León A (March 1994). “Comparison of the effect of amisulpride and viloxazine in the treatment of dysthymia” [Comparison of the effect of amisulpride and viloxazine in the treatment of dysthymia]. Acta Psiquiátrica Y Psicológica de América Latina (in Spanish). 40 (1): 41–9. PMID 8053353.
  28. ^ Mattingly, GW; Anderson, RH (December 2016). “Optimizing outcomes in ADHD treatment: from clinical targets to novel delivery systems”. CNS Spectrums21 (S1): 45–59. doi:10.1017/S1092852916000808PMID 28044946.
Patent ID Title Submitted Date Granted Date
US2004229942 Analeptic and antidepressant combinations
2004-05-12
2004-11-18
US2004242698 Analeptic and antidepressant combinations
2004-05-12
2004-12-02
US2002192302 Transdermal and topical administration of antidepressant drugs using basic enhancers
2002-06-19
2002-12-19
US2018105877 GENETIC POLYMORPHISMS ASSOCIATED WITH DEPRESSION
2017-05-19
US2013244990 GENETIC POLYMORPHISMS ASSOCIATED WITH DEPRESSION
2012-11-30
2013-09-19
Patent ID Title Submitted Date Granted Date
US2009197849 TRANSDERMAL AND TOPICAL ADMINISTRATION OF DRUGS USING BASIC PERMEATION ENHANCERS
2008-09-03
2009-08-06
US2006150989 Method of diagnosing, treating and educating individuals with and/or about depression
2005-01-12
2006-07-13
US8153159 Modafinil modified release pharmaceutical compositions
2004-09-17
2012-04-10
US2004229940 Analeptic and antidepressant combinations
2004-05-12
2004-11-18
US2004229941 Analeptic and antidepressant combinations
2004-05-12
2004-11-18
Patent ID Title Submitted Date Granted Date
US9434703 METHODS FOR PRODUCING VILOXAZINE SALTS AND NOVEL POLYMORPHS THEREOF
2014-12-19
2015-05-07
US2012220962 TRANSDERMAL AND TOPICAL ADMINISTRATION OF VITAMINS USING BASIC PERMEATION ENHANCERS
2012-05-10
2012-08-30
US9358204 FORMULATIONS OF VILOXAZINE
2013-02-07
2013-08-08
US2012289515 Combination therapy for cognitive distortions, resisting relapse of unipolar non-psychotic depression
2011-05-25
2012-11-15
US2009317453 TRANSDERMAL AND TOPICAL ADMINISTRATION OF DRUGS USING BASIC PERMEATION ENHANCERS
2008-12-23
2009-12-24
Patent ID Title Submitted Date Granted Date
US2006013834 Room temperature stable aqueous liquid pharmaceutical composition
2005-02-25
2006-01-19
US2004220262 Transdermal and topical administration of drugs using basic permeation enhancers
2004-06-03
2004-11-04
US2003124176 Transdermal and topical administration of drugs using basic permeation enhancers
2002-06-21
2003-07-03
US6713089 Quick release pharmaceutical compositions of drug substances
2001-07-10
2004-03-30
WO0015195 QUICK RELEASE PHARMACEUTICAL COMPOSITIONS OF DRUG SUBSTANCES
2000-03-23
Patent ID Title Submitted Date Granted Date
US2014315720 POLYSACCHARIDE ESTER MICROSPHERES AND METHODS AND ARTICLES RELATING THERETO
2014-04-04
2014-10-23
US2014113826 POLYSACCHARIDE ESTER MICROSPHERES AND METHODS AND ARTICLES RELATING THERETO
2013-10-23
2014-04-24
US2014052264 Porous, Stabilized Craniomaxillofacial Implants and Methods and Kits Relating Thereto
2013-08-12
2014-02-20
US2014348936 GASTRORETENTIVE CONTROLLED RELEASE VEHICLES THAT INCLUDE ETHYLENE COPOLYMERS, ETHYL CELLULOSES, AND/OR THERMOPLASTIC POLYURETHANES
2012-12-17
2014-11-27
US2016304475 METHODS FOR PRODUCING VILOXAZINE SALTS AND NOVEL POLYMORPHS THEREOF
2016-06-24
Patent ID Title Submitted Date Granted Date
US2017319698 GASTRORETENTIVE GEL FORMULATIONS
2015-10-26
US8231899 Quick release pharmaceutical compositions of drug substances
2004-01-13
2012-07-31
US9662338 FORMULATIONS OF VILOXAZINE
2016-06-03
2016-09-29
US9603853 FORMULATIONS OF VILOXAZINE
2016-05-18
2016-09-08
US2015306230 DRUG DELIVERY VEHICLES COMPRISING CELLULOSE DERIVATIVES, STARCH DERIVATIVES, AND COMBINATIONS THEREOF
2014-06-12
2015-10-29
Patent ID Title Submitted Date Granted Date
US3959273 Morpholine derivatives
1976-05-25
US8802596 Multi-functional ionic liquid compositions for overcoming polymorphism and imparting improved properties for active pharmaceutical, biological, nutritional, and energetic ingredients
2012-06-07
2014-08-12
US6060516 N1-propargylhydrazines, N2-propargylhydrazines and their analogs for the treatment of depression, anxiety and neurodegeneration
2000-05-09
US6479491 Disubstituted morpholine, oxazepine or thiazepine derivatives, their preparation and their use as dopamine d4 receptor antagonists
2002-11-12
US2017258801 FORMULATIONS OF VILOXAZINE
2017-05-25
Patent ID Title Submitted Date Granted Date
US6034117 Methods of treating and diagnosing sleep disordered breathing and means for carrying out the method
2000-03-07
EP0923370 ACETYL CHOLINE ESTERASE INHIBITORS FOR TREATING AND DIAGNOSING SLEEP DISORDERED BREATHING
1999-06-23
2005-11-16
US2014328884 CONTROLLED RELEASE VEHICLES HAVING DESIRED VOID VOLUME ARCHITECTURES
2012-12-17
2014-11-06
US9096743 PROCESS FOR FORMING FILMS, FIBERS, AND BEADS FROM CHITINOUS BIOMASS
2010-06-01
2012-05-10
US2003104041 Transdermal and topical administration of drugs using basic permeation enhancers
2002-06-20
2003-06-05
Patent ID Title Submitted Date Granted Date
WO9807710 DISUBSTITUTED MORPHOLINE, OXAZEPINE OR THIAZEPINE DERIVATIVES, THEIR PREPARATION AND THEIR USE AS DOPAMINE D4 RECEPTOR ANTAGONISTS
1998-02-26
US2014051771 Biomedical Devices Comprising Molded Polyethylene Components
2013-08-12
2014-02-20
US9278134 DUAL FUNCTIONING IONIC LIQUIDS AND SALTS THEREOF
2009-12-29
2012-02-23
US8232265 Multi-functional ionic liquid compositions for overcoming polymorphism and imparting improved properties for active pharmaceutical, biological, nutritional, and energetic ingredients
2007-04-26
2012-07-31
US2005074487 Transdermal and topical administration of drugs using basic permeation enhancers
2004-06-07
2005-04-07
Patent ID Title Submitted Date Granted Date
US9199918 SMALL MOLECULE INHIBITORS OF AGBL2
2012-02-14
2013-12-12
US9403783 METHODS FOR PRODUCING VILOXAZINE SALTS AND NOVEL POLYMORPHS THEREOF
2011-10-13
US7973043 Combination therapy for depression, prevention of suicide, and various medical and psychiatric conditions
2003-07-25
2011-07-05
US6207662 Disubstituted morpholine, oxazepine or thiazepine derivatives, their preparation and their use as dopamine D4 receptor antagonists
2001-03-27
EP0920423 DISUBSTITUTED MORPHOLINE, OXAZEPINE OR THIAZEPINE DERIVATIVES, THEIR PREPARATION AND THEIR USE AS DOPAMINE D4 RECEPTOR ANTAGONISTS
1999-06-09
2005-01-26
Viloxazine
Viloxazine structure.svg
Viloxazine molecule spacefill.png
Clinical data
Routes of
administration
By mouthintravenous infusion[1]
ATC code
Legal status
Legal status
  • In general: uncontrolled
Pharmacokinetic data
Elimination half-life 2–5 hours
Excretion Renal[2]
Identifiers
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEMBL
ECHA InfoCard 100.051.148 Edit this at Wikidata
Chemical and physical data
Formula C13H19NO3
Molar mass 237.295 g/mol g·mol−1
3D model (JSmol)
Chirality Racemic mixture

/////////////////Viloxazine, ヴィロキサジン , Emovit, VivalanEmovitVivarint, Vicilan

Cenobamate

$
0
0

img

Cenobamate
CAS: 913088-80-9
Chemical Formula: C10H10ClN5O2
Molecular Weight: 267.67

Related CAS #: 913088-80-9   913087-59-9

Synonym: YKP-3089; YKP3089; YKP3089; Cenobamate

IUPAC/Chemical Name: (R)-1-(2-chlorophenyl)-2-(2H-tetrazol-2-yl)ethyl carbamate

  • 2H-Tetrazole-2-ethanol, α-(2-chlorophenyl)-, carbamate (ester), (αR)- (9CI)
  • (1R)-1-(2-chlorophenyl)-2-(2H-tetrazol-2-yl)ethyl carbamate
  • Carbamic acid (R)-(+)-1-(2-chlorophenyl)-2-(2H-tetrazol-2-yl)ethyl ester
  • 2H-Tetrazole-2-ethanol, α-(2-chlorophenyl)-, 2-carbamate, (αR)-

Cenobamate, also known as YKP-3089, is a novel new antiepileptic drug candidate. Cenobamate showed broad-spectrum anticonvulsant activity. Cenobamate entered into clinical trials and was discontinued in 2015.

PATENT

WO 2006112685

SK HOLDINGS CO., LTD. [KR/KR]; 99 Seorin-dong Jongro-ku Seoul 110-110, KR

CHOI, Yong-Moon; US
KIM, Choon-Gil; KR
KANG, Young-Sun; KR
YI, Han-Ju; KR
LEE, Hyun-Seok; KR
KU, Bon-Chul; KR
LEE, Eun-Ho; KR
IM, Dae-Joong; KR
SHIN, Yu-Jin; KR

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2006112685

Patent

US 20100323410

PATENT

WO 2011046380

https://patentscope.wipo.int/search/en/detail.jsf%3Bjsessionid=9CF54FB903EC3DFB7B3237259E6419EB.wapp2?docId=WO2011046380&recNum=36&office=&queryString=&prevFilter=%26fq%3DOF%3AIL%26fq%3DICF_M%3A%22C07D%22&sortOption=Relevance&maxRec=1345

As disclosed in U. S. Patent Application Publication No. 2006/0258718 A1, carbamic acid (R)-1-aryl-2-tetrazolyl-ethyl esters (hereinafter referred to as “the carbamate compounds”) with anticonvulsant activity are useful in the treatment of disorders of the central nervous system, especially including anxiety, depression, convulsion, epilepsy, migraines, bipolar disorder, drug abuse, smoking, ADHD, obesity, sleep disorders, neuropathic pain, strokes, cognitive impairment, neurodegeneration, strokes and muscle spasms.
Depending on the position of N in the tetrazole moiety thereof, the carbamate compounds are divided into two positional isomers: tetrazole-1-yl (hereinafter referred to as “1N tetrazole”) and treatzole-2-yl (hereinafter referred to as “2N tetrazole”). The introduction of tetrazole for the preparation of the carbamate compounds results in a 1:1 mixture of the two positional isomers which are required to be individually isolated for pharmaceutical use.
Having chirality, the carbamate compounds must be in high optical purity as well as chemical purity as they are used as medications.
In this regard, U. S. Patent Application Publication No. 2006/0258718 A1 uses the pure enantiomer (R)-aryl-oxirane as a starting material which is converted into an alcohol intermediate through a ring-opening reaction by tetrazole in the presence of a suitable base in a solvent, followed by introducing a carbamoyl group into the alcohol intermediate. For isolation and purification of the 1N and 2N positional isomers thus produced, column chromatography is set after the formation of an alcohol intermediate or carbamate.
For use in the preparation, (R)-2-aryl-oxirane may be synthesized from an optically active material, such as substituted (R)-mandelic acid derivative, via various routes or obtained by asymmetric reduction-ring formation reaction of α-halo arylketone or by separation of racemic 2-aryl-oxirane mixture into its individual enantiomers. As such, (R)-2-aryl-oxirane is an expensive compound.
In addition, the ring-opening reaction of (R)-2-aryl-oxirane with tetrazole is performed at relatively high temperatures because of the low nucleophilicity of the tetrazole. However, the ring opening reaction includes highly likely risk of a runaway reaction because tetrazoles start to spontaneously degrade at 110 ~ 120℃.
In terms of a selection of reaction, as there are two reaction sites in each (R)-2-aryl-oxirane and tetrazole, the ring-opening reaction therebetween affords the substitution of 1N- or 2N-tetrazole at the benzyl or terminal position, resulting in a mixture of a total of 4 positional isomers. Therefore, individual positional isomers are low in production yield and difficult to isolate and purify.
Preparation Example 1: Preparation of 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-1-yl)ethan-1-one
To a suspension of 2-bromo-2′-chloroacetophenone (228.3 g, 0.978 mol) and potassium carbonate (161.6 g, 1.170 mol) in acetonitrile (2000 mL) was added a 35 w/w% 1H-tetrazole dimethylformamide solution (215.1 g, 1.080 mol) at room temperature. These reactants were stirred for 2 h at 45℃ and distilled under reduced pressure to remove about 1500 mL of the solvent. The concentrate was diluted in ethyl acetate (2000 mL) and washed with 10% brine (3 x 2000 mL). The organic layer thus separated was distilled under reduced pressure to afford 216.4 g of an oily solid residue. To a solution of the solid residue in ethyl acetate (432 mL) was slowly added heptane (600 mL). The precipitate thus formed was filtered at room temperature and washed to yield 90.1 g (0.405 mol) of 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-1-yl)ethan-1-one (hereinafter referred to as 1N ketone ).
1H-NMR(CDCl 3) 8.87(s, 1H), d7.77(d, 1H), d7.39-7.62(m, 3H), d5.98(s, 2H)
Preparation Example 2: Preparation of 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-2-yl)ethan-1-one
After the filtration of Preparation Example 1, the filtrate was concentrated and dissolved in isopropanol (100 mL), and to which heptane (400 mL) was then added to complete the crystallization. Filtering and washing at 5℃ afforded 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-2-yl)ethan-1-one (hereinafter referred to as “2N ketone”) as a solid. 94.7 g (0.425 mol).
1H-NMR(CDCl 3) d8.62(s, 1H), d7.72(d, 1H), d7.35-7.55(m, 3H), d6.17(s, 2H)
PREPARATION EXAMPLE 3: Preparation of Alcohol Compound of (R)-Configuration by enantioselective enzymatic reduction via various oxidoreductases
The following four solutions were prepared as follows:
Enzyme Solution 1
Competent Escherichia coli StarBL21(De3) cells (Invitrogen) were transformed with the expression constructs pET21-MIX coding for oxidoreductase SEQ ID NO 1. The Escherichia coli colonies transformed with the resulting expression constructs were then cultivated in 200 mL of LB medium (1% tryptone, 0.5 % yeast and 1% sodium chloride) with 50 micrograms/mL of ampicillin or 40 micrograms/mL of kanamycin, respectively, until an optical density of 0.5, measured at 550 nm, was achieved. The expression of the desired recombinant protein was induced by the addition of isopropylthiogalactoside (IPTG) to a concentration of 0.1 mM. After 16 hours of induction at 25 ℃ and 220 rpm, the cells were harvested and frozen at -20 ℃. In the preparation of the enzyme solutions, 30 g of cells were resuspended in 150 mL of triethanolamine buffer (TEA 100 nM, 2 mM MgCl2, 10% glycerol, pH 8) and homogenized in a high pressure homogenizer. The resultant enzyme solution was mixed with 150 mL glycerol and stored at -20℃.
Enzyme Solution 2
RB791 cells ( E.coli genetic stock, Yale, USA) were transformed with the expression constructs pET21-MIX coding for oxidoreductase SEQ ID NO 2. The Escherichia coli colonies transformed with the resulting expression constructs were then cultivated in 200 mL of LB medium (1% tryptone, 0.5 % yeast and 1% sodium chloride) with 50 micrograms/mL of ampicillin or 40 micrograms/mL of kanamycin, respectively, until an optical density of 0.5, measured at 550 nm, was achieved. The expression of the desired recombinant protein was induced by the addition of isopropylthiogalactoside (IPTG) to a concentration of 0.1 mM. After 16 hours of induction at 25℃ and 220 rpm, the cells were harvested and frozen at -20℃. In the preparation of the enzyme solutions, 30 g of cells were resuspended in 150 mL of triethanolamine buffer (TEA 100 nM, 2 mM MgCl2, 10% glycerol, pH 8) and homogenized in a high pressure homogenizer. The resultant enzyme solution was mixed with 150 mL glycerol and stored at -20℃.
Enzyme Solution 3
Enzyme solutions 3 was prepared in the same manner as described in Enzyme solution 1 except that expression constructs pET21-MIX coding for oxidoreductase SEQ ID NO 3 instead of expression constructs pET21-MIX coding for oxidoreductase SEQ ID NO 1 was used.
Enzyme Solution 4
Enzyme solutions 4 was prepared in the same manner as described for enzyme solution 2 except that expression constructs pET21-MIX coding for oxidoreductase SEQ ID NO 4 instead of expression constructs pET21-MIX coding for oxidoreductase SEQ ID NO 2 was used.
Different oxidoreductases contained in each enzyme solutions 1 to 4 were examined as follows for the conversion of 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-1-yl)ethan-1-one (1N ketone) and 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-2-yl)ethan-1-one (2N ketone) to the corresponding 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-1-yl)ethan-1-ol (hereinafter, referred to as 1N alcohol ) and 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-2-yl)ethan-1-ol (hereinafter, referred to as “2N alcohol”), respectively.
Reaction batch A
160 ㎕ buffer (TEA 100 nM, 2 mM MgCl2, 10% glycerol, pH 8)
100 ㎕ NADPH (40 mg/ml)
40 ㎕ 2-propanol
50 ㎕ enzyme solution 1
2 mg 1N ketone or 2N ketone
Reaction batch B
160 ㎕ buffer (TEA 100 nM, 2 mM MgCl2, 10% glycerol, pH 8)
100 ㎕ NADPH (40 mg/ml)
40 ㎕ 2-propanol
50 ㎕ enzyme solution 2
2 mg 1N ketone or 2N ketone
Reaction batch C
350 ㎕ buffer (TEA 100 nM, 2 mM MgCl2, 10% glycerol, pH 8)
0,05 mg NADP
50 ㎕ enzyme solution 3
10 mg 1N ketone or 2N ketone
250 ㎕ 4-methyl-2-pentanol
50 ㎕ enzyme (oxidoreductase from Thermoanerobium brockii) solution for regeneration of cofactor
Reaction batch D
350 ㎕ buffer (TEA 100 nM, 2 mM MgCl2, 10% glycerol, pH 8
0,05 mg NADP
50 ㎕ enzyme solution 4
10 mg 1N ketone or 2N ketone
250 ㎕ 4-methyl-2-pentanol
50 ㎕ enzyme (oxidoreductase from Thermoanerobium brockii) solution for regeneration of cofactor
After 24h of incubating each reaction batch A, B, C and D, 1 mL of acetonitrile was added to each reaction batch which was centrifuged and transferred into a HPLC analysis vessel for enantiomeric excess and conversion. Conversion and ee-value of products are listed in Table 1 below calculated using the following equations:
Conversion Rate (%) = [(Area of Product)/(Area of Reactant + Area of Product)]x100
ee-value(%) = [(Area of R-Configuration – Area of S-Configuration)/(Area of R-Configuration + Area of S-Configuration)] x 100
Table 1 [Table 1] 
PREPARATION EXAMPLE 4: Enzymatic reduction via oxidoreductase SEQ NO: 2
For the conversion of 1N/2N ketone to R-1N/R-2N alcohol, 30㎕ of the enzyme solution 2 containing the oxidoreductase SEQ NO: 2 were added to a mixture of 300㎕ of a buffer (100 mM TEA, pH 8, 1mM MgCl2, 10% glycerol), 100mg of a mixture of 1N ketone and 2N ketone (1N:2N=14%:86%), 0.04mg NADP and 300㎕ 2-butanol. The reaction mixture was incubated at room temperature under constant thorough mixing. After 48 hours, more than 98% of the ketones were reduced to an alcohol mixture of the following composition(R-2N alcohol 80%; S-2N alcohol 0%; R-1N alcohol 20%, S-1N alcohol 0%; 1N ketone 0%; 2N ketone 0%).
After general work up and recrystallization with ethyl acetate/hexane, optically pure alcohols were obtained as below:
(R)-1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-1-yl)ethan-1-ol (1N alcohol
1H-NMR(CDCl 3) d8.74(s, 1H), d7.21-7.63(m, 4H), d5.57(m, 1H), d4.90(d, 1H), d4.50(d, 1H), d3.18(d, 1H);
(R)-1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-2-yl)ethan-1-ol (2N alcohol)
1H-NMR(CDCl 3) d8.55(s, 1H), d7.28-7.66(m, 4H), d5.73(d, 1H), d4.98(d, 1H), d4.83(d, 1H), d3.38(br, 1H).
Preparation of Carbamate
Preparation Example 5: Preparation of Carbamic Acid (R)-1-(2-Chlorophenyl)-2-(tetrazol-2-yl)ethyl ester
50ml of the enzyme solution 2 containing the oxidoreductase SEQ NO: 2 were added to a mixture of 250ml of a buffer (100 mM TEA, pH 8, 1mM MgCl2, 10% glycerol), 50g (225mmol) of 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-2-yl)ethan-1-one(2N ketone), 4mg NAD, 300 ml of 2-propanol and 150mL of butyl acetate. The reaction mixture was stirred at room temperature. After 48 hours more than 98% of 2N ketone was reduced to corresponding (R)-1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-2-yl)ethan-1-ol (R-2N alcohol) with >99%ee values. To this resulting mixture, 500mL of ethyl acetate was added. After being separated, the organic layer thus formed was washed with 10% brine (3 x 500mL). The organic layer thus formed was dried over magnesium sulfate and filtered and the filtrate was distilled under reduced pressure to give 50.4g (224 mmol) of 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-2-yl)ethan-1-ol (R-2N alcohol, optical purity 99.9%) as an oily residue. To this resulting crude product, 450mL of tetrahydrofuran was added. After cooling to -15℃, 38g (267mmol) of chlorosulfonyl isocyanate was slowly added and stirred at -10℃ for 2 h. The slow addition of water induced termination of the reaction. The resulting solution was concentrated under reduced pressure until about 300 mL of the solvent was removed. The concentrate was diluted with 600mL of ethyl acetate and washed with 10% brine (3 x 500 mL). The organic layer was concentrated under reduced pressure and the concentrate was dissolved in isopropanol (90 mL) to which heptane (180 mL) was slowly added, leading to the completion of crystallization. The precipitate thus obtained was filtered and washed to afford 51.8 g (194 mmol) of carbamic acid (R)-1-(2-chlorophenyl)-2-(tetrazol-2-yl)ethyl ester (optical purity 99.9%).
1H-NMR(Acetone-d 6) d8.74(s, 1H), d7.38-7.54(m, 4H), d6.59(m, 1H), d6.16(Br, 2H), d4.90(d, 1H), d5.09(m, 2H)
As described hitherto, carbamate compounds with high optical and chemical purity can be produced with an economical benefit in accordance with the present invention.
Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
AMINO ACID SEQUENCES
SEQ ID NO 1: Oryctolagus cuniculus from rabbit DSMZ 22167
SEQ ID NO 2: Candida magnoliae DSMZ 22052 protein sequence carbonyl reductase
SEQ ID NO 3: Candida vaccinii CBS7318 protein sequence carbonyl reductase
SEQ ID NO 4: Candida magnoliae CBS6396 protein sequence carbonyl reductase
NUCLEIC ACID SEQUENCES
SEQ ID NO 5: Oryctolagus cuniculus from rabbit DSMZ 22167
SEQ ID NO 6: Candida magnoliae DSMZ 22052 nucleic acid sequence carbonyl reductase
SEQ ID NO 7: Candida vaccinii CBS7318 nucleic acid sequence carbonyl reductase
SEQ ID NO 8: Candida magnoliae CBS6396 nucleic acid sequence carbonyl reductase

Clip

Our team enjoyed celebrating the news of FDA acceptance of our new drug application (NDA) for investigational antiepileptic drug, cenobamate. A special thank you to everyone on our team who worked tirelessly to make this milestone possible!
SK life science announces FDA acceptance of NDA submission for cenobamate, an investigational antiepileptic drug PDUFA date set for November 21, 2019 Fair Lawn, New Jersey, February 4, 2019 – SK Life Science, Inc., a subsidiary of SK Biopharmaceuticals Co., Ltd., an innovative biopharmaceutical company focused on developing and bringing to market treatments for central nervous system (CNS) disorders, announced today that the U.S. Food and Drug Administration (FDA) has accepted the filing of its New Drug Application (NDA) for cenobamate. Cenobamate, an investigational antiepileptic drug for the potential treatment of partial-onset seizures in adult patients, is the first molecule discovered and developed from inception through to the submission of an NDA without partnering or out-licensing from a Korean pharmaceutical company.
SK life science plans to commercialize cenobamate independently. The NDA submission is based on data from pivotal trials that evaluated the efficacy and safety of cenobamate. Results from the clinical trial program, which enrolled more than 1,900 patients, have been presented at medical conferences including the American Academy of Neurology (AAN) and the American Epilepsy Society (AES) Annual Meetings. “The FDA’s acceptance of our NDA filing is a critical step toward our goal of introducing a new treatment option for people with uncontrolled epilepsy,” said Marc Kamin, M.D., chief medical officer at SK life science. “We look forward to working with the FDA during their review of our data on cenobamate.” Despite the availability and introduction of many new AEDs, overall treatment outcomes for people with epilepsy have not improved in 20 years
1 and the CDC states that nearly 60 percent of people with epilepsy are still experiencing seizures, showcasing a great unmet need for patients and their families. 2 Additionally, while some patients may experience a reduction in seizure frequency with current treatments, they continue to live with seizures.
2 The impact of continued seizures can be debilitating and life-altering and the complications of epilepsy can include depression and anxiety, cognitive impairment and SUDEP (sudden unexpected death in epilepsy).
3 About Epilepsy Epilepsy is a common neurological disorder characterized by seizures.
4 There are approximately 3.4 million people in the U.S. living with epilepsy, and approximately 65 million worldwide.
5 The majority of people with epilepsy (60%) have partial-onset seizures, which are located in just one part of the brain.
6 People with epilepsy are also at risk for accidents and other health complications including falling, drowning, car accidents, depression and anxiety and SUDEP. 3
About Cenobamate Cenobamate (YKP3089) was discovered by SK Biopharmaceuticaals and SK life science and is being investigated for the potential treatment of partial-onset seizures in adult patients. Cenobamate’s mechanism of action is not fully understood, but it is believed to work through two separate mechanisms: enhancing inhibitory currents through positive modulation of GABA-A receptors and decreasing excitatory currents by inhibiting the persistent sodium current. Global trials for adults with partial-onset seizures are ongoing to evaluate cenobamate safety.
Additional clinical trials are investigating cenobamate safety and efficacy in other seizure types. The U.S. Food and Drug Administration (FDA) accepted the filing of the New Drug Application for cenobamate for the potential treatment of partial-onset seizures in adults in February 2019. Cenobamate is not approved by the FDA or any other regulatory authorities. Safety and efficacy have not been established. About SK life science SK Life Science, Inc., a subsidiary of SK Biopharmaceuticals, Co., Ltd., is focused on developing and commercializing treatments for disorders of the central nervous system (CNS).
Both are a part of the global conglomerate SK Group, the second largest company in Korea. SK life science is located in Fair Lawn, New Jersey. We have a pipeline of eight compounds in development for the treatment of CNS disorders including epilepsy, sleep disorder and attention deficit hyperactivity disorder, among others. The first product the company is planning to commercialize independently is cenobamate (YKP3089), an investigational compound for the potential treatment of partial-onset seizures in adult patients, currently in a Phase 3 global clinical trial.
For more information, visit SK life science’s website at http://www.SKLifeScienceInc.com.
For more information, visit SK Biopharmaceuticals’ website at http://www.skbp.com/eng. —-
1. Chen Z, Brodie MJ, Liew D, Kwan P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. https://www.ncbi.nlm.nih.gov/pubmed/29279892 Published online December 26, 2017.
2. Center for Disease Control and Prevention. Active Epilepsy and Seizure Control in Adults — United States, 2013 and 2015. https://www.cdc.gov/mmwr/volumes/67/wr/mm6715a1.htm?s_cid=mm6715a1 Accessed December 27, 2018.
3. Epilepsy Foundation. Staying Safe. https://www.epilepsy.com/learn/seizure-first-aid-and-safety/staying-safe Accessed November 20, 2018.
4. Epilepsy Foundation. What Is Epilepsy? https://www.epilepsy.com/learn/about-epilepsy-basics/what-epilepsy Accessed November 20, 2018.
5. Epilepsy Foundation. Facts about Seizures and Epilepsy. https://www.epilepsy.com/learn/about-epilepsybasics/facts-about-seizures-and-epilepsy Accessed November 20, 2018.
6. National Institute of Neurological Disorders and Stroke. The Epilepsies and Seizures: Hope through Research. https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Hope-Through-Research/Epilepsies-andSeizures-Hope-Through#3109_9 Accessed November 20, 2018.

REFERENCES

1: Mula M. Emerging drugs for focal epilepsy. Expert Opin Emerg Drugs. 2013
Mar;18(1):87-95. doi: 10.1517/14728214.2013.750294. Epub 2012 Nov 26. Review.
PubMed PMID: 23176519.

2: Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress
report on new antiepileptic drugs: a summary of the Ninth Eilat Conference (EILAT
IX). Epilepsy Res. 2009 Jan;83(1):1-43. doi: 10.1016/j.eplepsyres.2008.09.005.
Epub 2008 Nov 12. PubMed PMID: 19008076.

/////////////YKP-3089, YKP3089, YKP3089, Cenobamate

NC(O[C@H](C1=CC=CC=C1Cl)CN2N=CN=N2)=O


Abikoviromycin

$
0
0
Abikoviromycin
ChemSpider 2D Image | abikoviromycin | C10H11NO
Abikoviromycin
  • Molecular FormulaC10H11NO
  • Average mass161.200 Da
CAS Registry Number: 31774-33-1
CAS Name: 7-Ethylidene-1a,2,3,7-tetrahydrocyclopent[b]oxireno[c]pyridine
(1aR,7E,7aS)-7-Ethylidene-1a,2,3,7-tetrahydrocyclopenta[b]oxireno[c]pyridine [ACD/IUPAC Name]
abikoviromycin
Cyclopent(b)oxireno(c)pyridine, 7-ethylidene-1a,2,3,7-tetrahydro-, (1aR,7E,7aS)-
Cyclopent[b]oxireno[c]pyridine, 7-ethylidene-1a,2,3,7-tetrahydro-, (1aR,7E,7aS)-
Additional Names: 4,4a-epoxy-5-ethylidene-2,3,4,4a-tetrahydro-5H-1-pyridine; abicoviromycin; latumcidin
Molecular Formula: C10H11NO
Molecular Weight: 161.20
Percent Composition: C 74.51%, H 6.88%, N 8.69%, O 9.93%
Literature References: Antiviral antibiotic produced by Streptomyces abikoensis and Streptomyces rubescens. Chromatographic isoln from broth cultures: Umezawa et al., Jpn. Med. J. 4, 331 (1951); C.A. 46, 7167 (1952); Umezawa, JP 54 6200 (1954 to Nippon). Identity with latumcidin: Sakagami et al., J. Antibiot. 11A, 231 (1958). Structure: Gurevich et al., Tetrahedron Lett. 1968,2209. Stereochemistry: Kono et al., J. Antibiot. 23, 572 (1970); Gurevich et al., Khim. Prir. Soedin. 7, 104 (1971), C.A. 75, 5752e (1971). Crystal and molecular structure of the selenate: Y. Kono et al., Acta Crystallogr. B27, 2341 (1971). In vitro antiviral activity: V. M. Roikhel, N. A. Zeitlenok, Antibiotiki 14, 969 (1969), C.A. 72, 19394q (1969).
Properties: Highly unstable and polymerizes promptly on isolation even at -50°; however, it can be handled in dilute solutions and in the form of its salts. uv max (neutral ethanol or 0.1N KOH): 218, 244, 289 nm (log e 3.83, 3.99, 3.94); (0.1N HCl) 236, 341 nm (log e 3.99, 4.05).
Absorption maximum: uv max (neutral ethanol or 0.1N KOH): 218, 244, 289 nm (log e 3.83, 3.99, 3.94); (0.1N HCl) 236, 341 nm (log e 3.99, 4.05)
Isolation of abikoviromycin and dihydroabikoviromycin as inhibitors of polyketide synthase involved in melanin biosynthesis by Colletotrichum lagenarium
Journal of Antibiotics (2003), 56, (9), 801-804.
purified by normal-phase HPLC (column: Senshu-Pak Aquasil SS-752N, 10×250mm, Senshu Kagaku; mobile phase: isocratic elution of nhexane: 2-propanol: H2O: triethylamine, 70:30:1:0.02; flow rate: 5ml/minutes; retention time: 9.0 minutes) to obtain 1 (6.3mg). 1:
FAB-MS (NBA matrix) m/z 162 (M+H)+; [α]20D+67.5° (c 0.025, 0.1N NaOH) [lit. [α]21D +148.9° (c 1, 0.1N NaOH)]9);
1H NMR (500MHz, CDCl3) δ 7.43 (1H, d, J=6.5Hz, 7-H), 6.53 (1H, d, J=6.5Hz, 6- H), 5.50 (1H, q, J=7.0Hz, 8-H), 3.92 (1H, s, 4-H), 3.81 (1H, dd, J=5.5, 15Hz, 2-Ha), 3.69 (1H, dt, J=5.5, 15Hz, 2-Hb), 2.19 (1H, m, 3-Ha), 1.90 (3H, d, J=7.0Hz, 9-H), 1.62 (1H, m, 3-Hb);
13C NMR (125MHz, CDCl3) δ 172.1 (C-7a), 142.3 (C-7), 136.5 (C-5), 132.8 (C-6), 119.5 (C-8), 59.5 (C-4), 54.5 (C-4a), 44.5 (C-2), 21.8 (C-3),14.0 (C-9).
////////////Abikoviromycin

“ALL FOR DRUGS” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This is a compilation for educational purposes only. P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent

READ

ANTHONY MELVIN CRASTO
NDA
DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO …..FOR BLOG HOME CLICK HERE
Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Facebook FACEBOOK

Join me on twitterFollow amcrasto on Twitter
Join me on google plus Googleplus

 amcrasto@gmail.com

CALL +919323115463  INDIA
//////////////

Batimastat, バチマスタット

$
0
0

Batimastat

Batimastat.svg

Batimastat
バチマスタット
Formula
C23H31N3O4S2
cas
130370-60-4
Mol weight
477.6399
Butanediamide, N4-hydroxy-N1-(2-(methylamino)-2-oxo-1-(phenylmethyl)ethyl)-2-(2-methylpropyl)-3-((2-thienylthio)methyl)-, (2R-(1(S*),2R*,3S*))-
DESCARBOXY-NOR-N(ω)-HYDROXY-L-ARGININE
DSX
EJ6675000
UNII:BK349F52C9
(2R,3S)-N4-Hydroxy-2-isobutyl-N1-[(2S)-1-(methylamino)-1-oxo-3-phenylpropan-2-yl]-3-[(2-thienylsulfanyl)methyl]succinamide
(2R,3S)-N4-hydroxy-N1-[(2S)-1-(methylamino)-1-oxo-3-phenylpropan-2-yl]-2-(2-methylpropyl)-3-[(thiophen-2-ylsulfanyl)methyl]butanediamide
(2R,3S)-N4-Hydroxy-N1-[(1S)-2-(methylamino)-2-oxo-1-(phenylmethyl)ethyl]-2-(2-methylpropyl)-3-[(2-thienylthio)methyl]butanediamide
(2S,3R)-5-Methyl-3-(((aS)-a-(methylcarbamoyl)phenethyl)carbamoyl)-2-((2-thienylthio)methyl)hexanohydroxamic Acid
[2R-[1(S*),2R*,3S*]]-N4-Hydroxy-N1-[2-(methylamino)-2-oxo-1-(phenylmethyl)ethyl]-2-(2-methylpropyl)-3-[(2-thienylthio)methyl]butane Diamide
130370-60-4 [RN]
7154
BK349F52C9
CAS Registry Number: 130370-60-4
CAS Name: (2R,3S)-N4-Hydroxy-N1-[(1S)-2-(methylamino)-2-oxo-1-(phenylmethyl)ethyl]-2-(2-methylpropyl)-3-[(2-thienylthio)methyl]butanediamide
Additional Names: (2S,3R)-5-methyl-3-[[(aS)-a-(methylcarbamoyl)phenethyl]carbamoyl]-2-[(2-thienylthio)methyl]hexanohydroxamic acid; [4-(N-hydroxyamino)-2R-isobutyl-3S-(2-thienylthiomethyl)succinyl]-L-phenylalanine-N-methylamide
Manufacturers’ Codes: BB-94
Molecular Formula: C23H31N3O4S2
Molecular Weight: 477.64
Percent Composition: C 57.84%, H 6.54%, N 8.80%, O 13.40%, S 13.43%
Literature References: Synthetic matrix metalloproteinase inhibitor. Prepn: C. Campion et al., WO 9005719eidem, US 5240958(1990, 1993 both to British Biotech.). Effect on transplanted human ovarian carcinoma: B. Davies et al., Cancer Res. 53, 2087 (1993). Inhibition of metastasis of transplanted human colorectal carcinoma: X. Wang et al., ibid. 54, 4726 (1994).
Properties: Fine white powder. mp 236-238°.
Melting point: mp 236-238°
Therap-Cat: Antineoplastic adjunct (antimetastatic agent).
Keywords: Antineoplastic Adjunct; Antimetastatic Agent; Matrix Metalloproteinase Inhibitor.

Batimastat (INN/USAN, codenamed BB-94) is an anticancer drug that belongs to the family of drugs called angiogenesis inhibitors. It acts as a matrix metalloproteinase inhibitor (MMPI) by mimicking natural MMPI peptides.

Batimastat was the first MMPI that went into clinical trials. First results of a Phase I trial appeared in 1994. The drug reached Phase III but was never marketed; mainly because it couldn’t be administered orally (as opposed to the newer and chemically similar MMPI marimastat), and injection into the peritoneum caused peritonitis.[1]

SYN

U.S. Patent 5,453,438

U.S. Patent 5,240,958

U.S. Patent 5,530,161

Image result for batimastat

SYN

US 5240958; US 5310763; WO 9005719

The treatment of D-leucine (I) with NaNO2, H2SO4 and NaBr gives 2(R)-bromo-5-methylpentanoic acid (II), which is esterified with isobutene and H2SO4 to the corresponding tert-butyl ester (III). The condensation of (III) with dibenzyl malonate (IV) by means of potassium tert-butoxide in DMF yields the malonyl derivative (V), which is treated with trifluoroacetic acid to hydrolyze the tert-butyl ester, and without isolation is condensed with L-phenylalanine methyl amide (VI) by means of hydroxybenzotriazole (HOBT) and dicyclohexylcarbodiimide (DCC), affording 4-benzyloxy-3-(benzyloxycarbonyl)-2(R)-isobutylsuccinyl-L-phenylalanine methylamide (VII). The elimination of the benzyl groups of (VII) by hydrogenolysis over Pd/C in ethanol gives the dicarboxylic acid (VIII), which by partial decarboxylation and reaction with aqueous formaldehyde and piperidine yields 4-hydroxy-2(R)-isobutyl-3-methylenesuccinyl-L-phenylalanine methylamide (IX). The addition of thiophene-2-thiol (X) to the double bond of (IX) affords 4-hydroxy-2(R)-isobutyl-3(S)-(2-thienylsulfanylmethyl)succinyl-L-phenylalanine methylamide (XI), which is finally treated with hydroxylamine and hydroxybenzotriazole in dichloromethane/DMF.

SPEC

HPLC

References

  1. ^ Rothenberg, M. L.; Nelson, A. R.; Hande, K. R. (1999). “New Drugs on the Horizon: Matrix Metalloproteinase Inhibitors”. Stem Cells17 (4): 237–240. doi:10.1002/stem.170237PMID 10437989.
Batimastat
Batimastat.svg
Clinical data
Pregnancy
category
  • N/A
Routes of
administration
Injection into pleural space or abdomen
ATC code
  • none
Legal status
Legal status
  • Never marketed
Identifiers
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
ECHA InfoCard 100.222.897 Edit this at Wikidata
Chemical and physical data
Formula C23H31N3O4S2
Molar mass 477.64 g/mol g·mol−1
3D model (JSmol)

//////////Batimastat, BB-94, バチマスタット  ,

[H][C@@](CC1=CC=CC=C1)(NC(=O)[C@]([H])(CC(C)C)[C@]([H])(CSC1=CC=CS1)C(=O)NO)C(=O)NC

Cevimeline, セビメリン

$
0
0

Cevimeline.svg

Cevimeline

セビメリン

  • Molecular FormulaC10H17NOS
  • Average mass199.313 Da
cis-2′-Methylspiro[4-azabicyclo[2.2.2]octane-2,5′-[1,3]oxathiolane]
Evoxac [Trade name]
Spiro[1-azabicyclo[2.2.2]octane-3,5′-[1,3]oxathiolane], 2′-methyl-, (2’R,3R)-
Cevimeline
CAS Registry Number: 107233-08-9
CAS Name: (2¢R,3R)-rel-2¢-Methylspiro[1-azabicyclo[2.2.2]octane-3,5¢-[1,3]oxathiolane]
Additional Names: (±)-cis-2-methylspiro[1,3-oxathiolane-5,3¢-quinuclidine]
Molecular Formula: C10H17NOS
Molecular Weight: 199.31
Percent Composition: C 60.26%, H 8.60%, N 7.03%, O 8.03%, S 16.09%
Literature References: Muscarinic M1 and M3 receptor agonist. Prepn: A. Fisher et al., JP Kokai 61 280497eidemUS 4855290; (1986, 1989 both to State of Israel). Improved process: K. Hayashi et al., US 5571918 (1996 to Ishihara Sangyo Kaisha). Sialogogic effect in animals: H. Masunaga et al., Eur. J. Pharmacol. 339, 1 (1997). General pharmacology: H. Arisawa et al., Arzneim.-Forsch. 52, 14, 81 (2002). Clinical experience in Sjögren’s syndrome dry eye: M. Ono et al., Am. J. Ophthalmol. 138, 6 (2004); in dry mouth: K. Suzuki et al., Pharmacology 74, 100 (2005). Review of clinical pharmacokinetics and efficacy in Sjögren’s syndrome: H. Yasuda, H. Niki, Clin. Drug Invest. 22, 67-73 (2002).
Derivative Type: Hydrochloride hemihydrate
CAS Registry Number: 153504-70-2; 107220-28-0 (anhydrous)
Manufacturers’ Codes: AF-102B; SNI-2011
Trademarks: Evoxac (Daiichi)
Molecular Formula: C10H17NOS.HCl.½H2O
Molecular Weight: 244.78
Percent Composition: C 49.07%, H 7.82%, N 5.72%, O 9.80%, S 13.10%, Cl 14.48%
Properties: White to off white crystalline powder, mp 201-203°. Freely sol in alcohol, chloroform; very sol in water. Virtually insol in ether.
Melting point: mp 201-203°
Therap-Cat: Sialagogue.
Keywords: Sialagogue.

Cevimeline hydrochloride

    • Synonyms:AF-102B, SNI-2011, SNK-508, Evoxac
    • ATC:N07
  • Use:cognition disorder, treatment of Sjogren’s syndrome, muscarinic M3-receptor agonist
  • Chemical name:(2′R,3R)-rel-2′-methylspiro[1-azabicyclo[2.2.2]octane-3,5′-[1,3]oxathiolane] hydrochloride hydrate (2:2:1)
  • Formula:C10H17NOS • HCl • 1/2H2O
  • MW:489.57 g/mol
  • CAS-RN:153504-70-2
  • InChI Key:SURWTGAXEIEOGY-GHXDPTCOSA-N
  • InChI:InChI=1S/C10H17NOS.ClH/c1-8-12-10(7-13-8)6-11-4-2-9(10)3-5-11;/h8-9H,2-7H2,1H3;1H/t8-,10-;/m1./s1

Derivatives

base

  • Formula:C10H17NOS
  • MW:199.32 g/mol
  • CAS-RN:107233-08-9

anhydrous hydrochloride

  • Formula:C10H17NOS • HCl
  • MW:235.78 g/mol
  • CAS-RN:107220-28-0

Cevimeline is cis-2′-methylspiro {1-azabicyclo [2.2.2] octane-3, 5′ -[1,3] oxathiolane} hydro-chloride, hydrate (2:1). Its empirical formula is C10H17NOS•HCl•½ H2O, and its structural formula is:

Image result for Cevimeline STRUCTURECevimeline has a molecular weight of 244.79. It is a white to off white crystalline powder with a melting point range of 201 to 203°C. It is freely soluble in alcohol and chloroform, very soluble in water, and virtually insoluble in ether. The pH of a 1% solution ranges from 4.6 to 5.6. Inactive ingredients include lactose monohydrate, hydroxypropyl cellulose, and magnesium stearate.

Image result for Cevimeline STRUCTURE

Image result for Cevimeline STRUCTURE

Cevimeline hydrochloride [USAN]
RN: 153504-70-2

 (+-)-cis-2-Methylspiro(1,3-oxathiolane-5,3′-quinuclidine) hydrochloride, hemihydrate

Cevimeline (trade name Evoxac) is a parasympathomimetic and muscarinic agonist,[1] with particular effect on M1 and M3 receptors. It is used in the treatment of dry mouth and especially associated with Sjögren’s syndrome.

Mechanism of action

By activating the M3 receptors of the parasympathetic nervous system, cevimeline stimulates secretion by the salivary glands, thereby alleviating dry mouth.

Side effects

Known side effects include nauseavomitingdiarrhea, excessive sweatingrashheadacherunny nosecoughdrowsinesshot flashesblurred vision, and difficulty sleeping.[2]

Contraindications include asthma and angle closure glaucoma.

Clip

https://www.sciencedirect.com/science/article/abs/pii/S0731708515302260

Image result for cevimeline

Image result for cevimeline

Image result for cevimeline

CLIP

https://www.sciencedirect.com/science/article/pii/S0040403913005042

Image result for cevimeline

Image result for cevimeline

Image result for cevimeline

CLIP

CLIP

  • Reaction of quinuclidin-3-one (I) with trimethylsulfoxonium iodide and NaH in DMSO gives epoxide (II), which is opened with SH2 in NaOH/water, yielding 3-hydroxy-3-(sulfanylmethyl)quinuclidine (III). The cyclization of compound (III) with acetaldehyde (IV) catalyzed by boron trifluoride ethearate or by SnCl4, POCl3, H3PO4 or p-toluenesulfonic acid affords a mixture of two diastereomeric spiroracemates, the (?-trans (V) and (?-cis (cevimeline). This mixture is separated by fractional recrystallization in acetone or by TLC chromatography, and treated with hydrochloric acid. The (?-trans-compound (V) can be isomerized to cevimeline by treatment with an acidic catalyst such as an organic sulfonic acid (trifluoromethanesulfonic acid, p-toluenesulfonic acid or methanesulfonic acid), a Lewis acid (SnCl4, FeCl3, BF3 or AlCl3) or sulfuric acid in refluxing toluene, hexane or CHCl3. Cevimeline hydrochloride hemihydrate is obtained from the above mentioned hydrochloride by a complex work-up using water, isopropanol and n-hexane.
  • Synthesis of Cevimeline Hydrochloride (EN:134916): Reaction of quinuclidin-3-one (I) with trimethylsulfoxonium iodide and NaH in DMSO gives epoxide (II), which is opened with SH2 in NaOH/water, yielding 3-hydroxy-3-(sulfanylmethyl)quinuclidine (III) (1,2). The cyclization of compound (III) with acetaldehyde (IV) catalyzed by boron trifluoride ethearate (1) or by SnCl4, POCl3, H3PO4 or p-toluenesulfonic acid (2) affords a mixture of two diastereomeric spiro-racemates, the (?-trans (V) and (?-cis (cevimeline). This mixture is separated by fractional recrystallization in acetone or by TLC chromatography, and treated with hydrochloric acid (1,2). The (?-trans-compound (V) can be isomerized to cevimeline by treatment with an acidic catalyst such as an organic sulfonic acid (trifluoromethanesulfonic acid, p-toluenesulfonic acid or methanesulfonic acid), a Lewis acid (SnCl4, FeCl3, BF3 or AlCl3) or sulfuric acid in refluxing toluene, hexane or CHCl3 (2,3). Cevimeline hydrochloride hemihydrate is obtained from the above mentioned hydrochloride by a complex work-up using water, isopropanol and n-hexane (4).(Scheme 13491601a) Description M.p. 203 C (4). Sources Discovered by Israel Institute for Biological Research, Ness-Ziona (IL) and licensed to Snow Brand Milk Products Co. Ltd. (JP). In the U.S., comarketed by Snow Brand Milk Products and Daiichi Pharmaceutical Co., Ltd. In Japan, codeveloped with Nippon Kayaku Co. Ltd. Ishihara Sangyo Co., Ltd. (JP) is the bulk supplier. References 1. Fisher, A., Heldman, E., Grunfeld, Y., Karton, I., Levy, A. (Israel Institute for Biological Research); Derivs. of quinuclidine; EP 0205247, JP 1986280497, US 4855290. 2. Hayashi, K., Tokumoto, S., Yoshizawa, H., Isogai, T. (Ishihara Sangyo Kaisha, Ltd.); Method for producing 2-methylspiro(1,3-oxathiolan-5,3′)quinuclidine; EP 0683168, US 5571918. 3. Haga, T., Koyanagi, T., Hara, K., Maeda, M., Shigehara, I. (Ishihara Sangyo Kaisha, Ltd.); Method for isomerization of trans-form 2-methylspiro(1,3-oxathiolane-5,3′)quinuclidine or acid addition salts thereof; EP 0298491, US 4861886. 4. Saito, K., Ono, T., Honda, N. (Snow Brand Milk Products Co., Ltd.); Preparation method of cis-2-methylspiro(1,3-oxathiolane-5,3′)quinuclidine hydrochloride.1/2 hydrate capable of disgregating easily; JP 1992108792.

PATENT

https://patents.google.com/patent/US8080663B2/en

The present invention refers to a novel, industrially advantageous process for the preparation of an intermediate useful for the preparation of Cevimeline hydrochloride (1, cis-2-methylspiro(1,3-oxathiolane-5,3′)quiniclidine, Scheme 1). This pharmaceutical is useful for the treatment of diseases of the central nervous system due to disturbances of central cholinergic function and autoimmune system (Sjörgen’s syndrome) and is marketed as Evoxac®.

U.S. Pat. No. 4,855,290 describes a process for preparation of 2-methylspiro(1,3-oxathiolane-5,3′)quiniclidine (1). The process comprises the preparation of the epoxide of 3-methylenequiniclidine, which is subsequently reacted with hydrogen sulfide to produce 3-hydroxy-3-mercaptomethylquiniclidine and condensed with acetaldehyde in the presence of a Lewis acid (boron trifluoride etherate) to provide 2-methylspiro(1,3-oxathiolane-5,3′)quiniclidine. This process is depicted in Scheme I.

Figure US08080663-20111220-C00001

This process suffers from major disadvantages when transiting to industrial scale. These include the use of the highly hazardous and difficult to handle hydrogen sulfide gas. Also, boron trifluoride etherate is employed during the condensation step with acetaldehyde. The boron trifluoride etherate reagent is an air and moisture sensitive Lewis acid which has to be used under anhydrous conditions, thus creating a serious disadvantage in industrial settings. Another drawback of this process is the use of sodium hydride. U.S. Pat. Nos. 5,571,918 and 4,861,886 relate to the isomerization of the trans- to cis-form of 2-methylspiro(1,3-oxathiolane-5,3′)quiniclidine but do not describe methods for its preparation. Thus, an industrially acceptable and cost-effective method for the preparation of Cevimeline hydrochloride which overcomes the deficiencies of the prior art is required.

Further and other objects of the invention will be realized by those skilled in the art from the following Summary of the Invention and Detailed Description of Preferred Embodiments of the Invention thereof.

According to one aspect of the invention, a novel process is provided for the preparation of 2-methylspiro(1,3-oxathiolane-5,3′)quiniclidine (1). The process is industrially practical, efficient, safe and economical, as well as being environmentally friendly. The general method is shown in the Scheme II.

Figure US08080663-20111220-C00002


wherein R is selected from C1 to C6 alkyl and aryl groups, most preferably a methyl, ethyl or propyl group; Ris hydrogen or a C2 to C7 alkyl or aryl carbonyl group; Ris a C1 to C6 alkyl group, preferably methyl, ethyl, propyl, or butyl group.

Figure US08080663-20111220-C00003

EXAMPLE I Preparation of the Epoxide of 3-methylenequiniclidine (3)

A mixture of the hydrochloric salt of 3-quiniclidinone (2, 120 g, 795.7 mmol) and trimethylsulfoxonium iodide (219 g, 993.3 mmol) in dimethylsulfoxide (91.0 g, 0.63 mol) was cooled to 0-5° C. in an ice/water bath under nitrogen atmosphere. A solution of potassium tert-butoxide (201 g, 1789.1 mmol) in dimethylsulfoxide (500 mL) was added dropwise over 45 minutes. The mixture was warmed gradually to room temperature and stirred for an additional 16 hours at room temperature. After cooling to 0-5° C. (ice/water bath) the mixture was poured into an ice/water mixture (500 g) and then sodium chloride (300 g) was added. The mixture was stirred for 30 minutes and extracted with toluene (3×400 mL). The toluene phase was dried over sodium sulfate, filtered and evaporated to furnish the epoxide of 3-methylenequiniclidine (60 g, 431.7 mmol, 54% yield) as a yellow oil. The product could be used in the next step neat or as toluene solution after the extraction without further purification.

1H NMR (400 MHz, CDCl3): δ=3.10 (d, 1H, J=14.6 Hz); 2.98-2.77 (m, 5H); 2.74 (d, 1H, J=4.8 Hz); 2.70 (d, 1H, J=4.8 Hz); 1.96-1.89 (m, 1H); 1.79-1.62 (m, 2H); 1.60-1.54 (m, 1H); 1.38-1.36 (m,1H).

LRMS (ES+): 140.0 (100, M+H+).

EXAMPLE II Preparation of the Thiolacetic Acid Salt of 3-hydroxy-3-acetoxymercaptomethylquiniclidine (4)

A solution of the epoxide of 3-methylenequiniclidine (3, 54 g, 388.5 mmol) in toluene (200 mL) was cooled to 0-5° C. (ice/water bath). Thiolacetic acid was added dropwise over 10-15 minutes. The mixture was stirred at 0-5° C. for 30 minutes and then allowed to come to room temperature. After stirring at room temperature for 2 hours the formed precipitate was filtered and washed with toluene (2×100 mL) to give the 3-hydroxy-3-acetoxymercaptomethylquiniclidine thiolacetic acid salt (4 wherein Ris H and R is methyl, 77 g, 264.6 mmol, 68%) as a light yellow solid. The product was used in the next step without any further purification.

1H NMR (400 MHz CD3OD): δ=3.47 (d, 1H, J=14.1 Hz); 3.37-3.18 (m, 7H); 2.40 (s, 3H); 2.38 (s, 3H); 2.36-2.27 (m, 1H), 2.14-2.05 (m, 2H); 2.03-1.93 (m, 1H); 1.81-1.78 (m, 1H).

LRMS (ES+): 216.1 (100, M−[SCOCH3]+H+).

EXAMPLE III Preparation of 2-methylspiro(1,3-oxathiolane-5,3′)quiniclidine using p-toluenesulfonic acid (1)

To a solution of 3-hydroxy-3-acetoxymercaptomethylquiniclidine thiolacetic acid salt (4 wherein Ris H and R is methyl, 3 g, 10.3 mmol) in iso-propanol (50 mL) was added p-toluenesulfonic acid monohydrate (5.9 g, 30.9 mmol) and the mixture was heated to reflux for 3.5 hours. The mixture was cooled to room temperature and acetaldehyde diethyl acetal (6.1 g, 51.5 mmol) was added. The mixture was heated to reflux and stirred for an additional 3 hours. The solvent was evaporated and the residue was dissolved in dichloromethane (50 mL). The mixture was cooled to 0-5° C. and a 25% aqueous solution of sodium hydroxide (80 mL) was added. The mixture was stirred for 10-15 minutes and the phases were separated. The aqueous phase was extracted with dichloromethane (3×50 mL). The organic phases were combined and extracted with 5% aqueous solution of sulfuric acid (3×50 mL). The acidic aqueous phases were combined and the pH was adjusted to 12 with a 25% aqueous solution of sodium hydroxide. The aqueous phase was extracted with heptane (3×50 mL) and the organic phases were combined, dried over sodium sulfate and the solvent was evaporated to give 2-methylspiro(1,3-oxathiolane-5,3′)quiniclidine (1.8 g, 9.2 mmol, 89% yield) as a 3:1 cis/trans ratio mixture of diastereomers (determined by 1H NMR).

LRMS (ES+): 200.1 (100, M+H+).

EXAMPLE IV Preparation of 2-methylspiro(1,3-oxathiolane-5,3′)quiniclidine (1) using racemic camphorsulfonic acid

In a similar experiment as Example III, racemic camphorsulfonic acid (7.2 g, 30.9 mmol) was added to a solution of 3-hydroxy-3-acetoxymercaptomethylquiniclidine thiolacetic acid salt (4 wherein Ris H and R is methyl, 3 g, 10.3 mmol) in iso-propanol (50 mL). The mixture was refluxed for 5 h, cooled to room temperature and acetaldehyde diethyl acetal (6.1 g, 51.5 mmol) was added. The mixture was refluxed for an additional an 8 hours and processed according to Example III to give 2-methylspiro(1,3-oxathiolane-5,3′)quiniclidine (1.32 g, 6.63 mmol, 64% yield) in a 3.5:1 cis/trans ratio mixture of diastereomers (determined by 1H NMR).

EXAMPLE V Preparation of 2-methylspiro(1,3-oxathiolane-5,3′)quiniclidine (1) using phenyl sulfonic acid

In a similar experiment as Example III, to a solution of 3-hydroxy-3-acetoxymercaptomethylquiniclidine thiolacetic acid salt (4 wherein Ris H and R is methyl, 3 g, 10.3 mmol) in iso-propanol (50 mL) was added phenyl sulfonic acid (4.9 g, 30.9 mmol) and the mixture was refluxed 5 h, cooled to room temperature and acetaldehyde diethyl acetal (6.1 g, 51.5 mmol) was added. The mixture was refluxed for an additional 8 hours and worked up in a manner similar to Example III to furnish 2-methylspiro(1,3-oxathiolane-5,3′)quiniclidine (1.6 g, 8.2 mmol, 80% yield) as a 2.5:1 cis/trans ratio mixture of diastereomers (determined by 1H NMR).

EXAMPLE VI Preparation of 2-methylspiro(1,3-oxathiolane-5,3′)quiniclidine (1) using p-toluenesulfonic acid in butanol

To a solution of 3-hydroxy-3-acetoxymercaptomethylquiniclidine thiolacetic acid salt (4 wherein Ris H and R is methyl, 3 g, 10.3 mmol) in butanol (100 mL) was added of p-toluenesulfonic acid monohydrate (5.9 g, 30.9 mmol) and the mixture was refluxed for 3 hours with a Dean-Stark apparatus attached to the flask. The reaction mixture was cooled to room temperature and acetaldehyde diethyl acetal (6.1 g, 51.5 mmol) was added. The mixture was heated to 80° C. for an additional 8 h and worked up according to Example III to afford 2-methylspiro(1,3-oxathiolane-5,3′)quiniclidine (1.8 g, 9.2 mmol, 89% yield) as a 3:1 cis/trans ratio mixture of diastereomers (determined by 1H NMR).

References

  1. ^ Ono M, Takamura E, Shinozaki K, et al. (July 2004). “Therapeutic effect of cevimeline on dry eye in patients with Sjögren’s syndrome: a randomized, double-blind clinical study”Am. J. Ophthalmol138 (1): 6–17. doi:10.1016/j.ajo.2004.02.010PMID 15234277.
  2. ^ [1] MedicineNet: Cevimeline. Accessed 10/12/2007
      • US 4 855 290 (Israel Institute for Biological Research; 8.8.1989; IL-prior. 10.5.1985).
      • US 4 876 260 (Israel Institute for Biological Research; 24.10.1989; USA-prior. 28.10.1987).
      • EP 683 168 (Ishihara Sangyo Kaisha; appl. 19.5.1995; J-prior. 19.5.1994).
    • Method for isomerization of trans-isomer:

      • US 4 861 886 (Ishihara Sangyo Kaisha; 29.8.1989; J-prior. 10.7.1987).
    • Method of separation:

      • IL 81 652 (Israel Institute for Biological Research; 12.5.1991; appl. 23.2.1987).
      • JP 01 290 680 (Ishihara Sangyo Kaisha; 22.11.1989; J-prior. 18.5.1988).
    • Synthesis of enantiomerically pure (S)-3-hydroxy-3-mercaptomethylquinuclidine (S)-II:

      • Bos, M.; Canesso, R.: Heterocycles (HTCYAM) 38 (8), 1889 (1994).
    • Synthesis of 3-quinuclidone:

      • Sternbach, L.H.; Kaiser, S.: J. Am. Chem. Soc. (JACSAT) 74, 2215 (1952).

External links

Cevimeline
Cevimeline.svg
Cevimeline 3D.png
Clinical data
Trade names Evoxac
AHFS/Drugs.com Monograph
MedlinePlus a608025
Pregnancy
category
  • C
Routes of
administration
By mouth (capsules)
ATC code
Legal status
Legal status
  • In general: ℞ (Prescription only)
Pharmacokinetic data
Protein binding <20%
Identifiers
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
Chemical and physical data
Formula C10H17NOS
Molar mass 199.31308 g/mol g·mol−1
3D model (JSmol)

/////////// Cevimeline, AF-102B, SNI-2011, SNK-508, Evoxac, セビメリン

Certolizumab pegol, セルトリズマブペゴル (遺伝子組換え)

$
0
0

Image result for certolizumab pegol

>Amino acid sequence of the light chain
DIQMTQSPSSLSASVGDRVTITCKASQNVGTNVAWYQQKPGKAPKALIYSASFLYSGVPY
RFSGSGSGTDFTLTISSLQPEDFATYYCQQYNIYPLTFGQGTKVEIKRTVAAPSVFIFPP
SDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT
LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
>Amino acid sequence of the heavy chain
EVQLVESGGGLVQPGGSLRLSCAASGYVFTDYGMNWVRQAPGKGLEWMGWINTYIGEPIY
ADSVKGRFTFSLDTSKSTAYLQMNSLRAEDTAVYYCARGYRSYAMDYWGQGTLVTVSSAS
TKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL
YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCAA

Certolizumab pegol

CAS: 428863-50-7

セルトリズマブペゴル (遺伝子組換え)

CDP 870 / CDP-870 / CDP870 / PHA-738144

Formula
C2115H3252N556O673S16
Cas
428863-50-7
Mol weight
47748.8128

Reducing signs and symptoms of Crohn’s disease and treatment of moderately to severely active rheumatoid arthritis (RA).

Certolizumab pegol is a recombinant Fab’ antibody fragment against tumor necrosis factor alpha which is conjugated to an approximately 40kDa polyethylene glycol (PEG2MAL40K). Polyethylene glycol helps to delay the metabolism and elimination of the drugs. Chemically, the light chain is made up of 214 amino acid residues while the heavy chain is composed of 229 amino acid residues. The molecular mass of the Fab’ antibody fragment itself is 47.8 kDa. It is used for the treatment of rheumatoid arthritis and Crohn’s disease. FDA approved on April 22, 2008

Certolizumab pegol (CDP870, tradename Cimzia) is a biologic medication for the treatment of Crohn’s disease,[1][2] rheumatoid arthritispsoriatic arthritis and ankylosing spondylitis. It is a fragment of a monoclonal antibody specific to tumor necrosis factor alpha(TNF-α) and is manufactured by UCB.[3][4][5]

Image result for certolizumab pegol

Medical uses

Crohn’s Disease
On April 22, 2008, the U.S. FDA approved Cimzia for the treatment of Crohn’s disease in people who did not respond sufficiently or adequately to standard therapy.[4][6][7]
Rheumatoid arthritis
On June 26, 2009, the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) issued a positive opinion recommending that the European Commission grant a marketing authorisation for Cimzia for the treatment of rheumatoid arthritis only – the CHMP refused approval for the treatment of Crohn’s disease. The marketing authorisation was granted to UCB Pharma SA on October 1, 2009.[8]
Psoriatic arthritis
On September 27, 2013, the U.S. FDA approved Cimzia for the treatment of adult patients with active psoriatic arthritis.[9]

Method of action

Certolizumab pegol is a monoclonal antibody directed against tumor necrosis factor alpha. More precisely, it is a PEGylated Fabfragment of a humanized TNF inhibitor monoclonal antibody.[10]

Clinical trials

Crohn’s disease
Positive results have been demonstrated in two phase III trials (PRECiSE 1 and 2) of certolizumab pegol versus placebo in moderate to severe active Crohn’s disease.[1][10][11][12]
Axial spondyloarthritis
In 2013, a phase 3 double blind randomized placebo-controlled study found significantly positive results in patient self-reported questionnaires, with rapid improvement of function and pain reduction, in patients with axial spondyloarthritis.[13]
Rheumatoid arthritis
Certolizumab appears beneficial in those with rheumatoid arthritis.[14]

Side effects

Significant side effects occur in 2% of people who take the medication.[14]

References

  1. Jump up to:a b Sandborn WJ, Feagan BG, Stoinov S, et al. (July 2007). “Certolizumab pegol for the treatment of Crohn’s disease”N. Engl. J. Med357 (3): 228–38. doi:10.1056/NEJMoa067594PMC 3187683PMID 17634458.
  2. ^ Goel, Niti; Sue Stephens (2010). “Certolizumab pegol”mAbs2 (2): 137–147. doi:10.4161/mabs.2.2.11271PMC 2840232PMID 20190560.
  3. ^ Kaushik VV, Moots RJ (April 2005). “CDP-870 (certolizumab) in rheumatoid arthritis”. Expert Opinion on Biological Therapy5 (4): 601–6. doi:10.1517/14712598.5.4.601PMID 15934837.
  4. Jump up to:a b index.cfm?fuseaction=Search.Label_ApprovalHistory “Cimzia Label and Approval History” Check |url= value (help)Drugs@FDAU.S. Food and Drug Administration(FDA). Retrieved 2009-11-15.
  5. ^ “Cimzia Prescribing Information” (PDF). US Food and Drug Administration (FDA). April 2016. Retrieved 2016-08-21.
  6. ^ UCB press release – Cimzia Approved in the US for the Treatment of Moderate to Severe Crohn’s Disease. Retrieved April 22, 2008.
  7. ^ Waknine, Yael (May 1, 2008). “FDA Approvals: Patanase, Actonel, Cimzia”Medscape. Retrieved 2008-05-01.
  8. ^ “Cimzia European Public Assessment Report”European Medicines Agency. Retrieved November 15, 2009.
  9. ^ “Cimzia (certolizumab pegol) approved by the U.S. FDA for treatment of adult patients with active psoriatic arthritis”. Archived from the original on October 1, 2013. Retrieved October 1, 2013.
  10. Jump up to:a b Schreiber S. et al., Certolizumab pegol, a humanised anti-TNF pegylated FAb’ fragment, is safe and effective in the maintenance of response and remission following induction in active Crohn’s disease: a phase 3 study (precise), Gut, 2005, 54, suppl7, A82
  11. ^ Sandborn et al., Certolizumab pegol administered subcutaneously is effective and well tolerated in patients with active Crohn’s disease: results from a 26-week, placebo-controlled Phase 3 study (PRECiSE 1), Gastroenterology, 2006, 130, A107
  12. ^ “New Analysis Shows Cimzia (Certolizumab Pegol) Maintained Remission and Response in Recent Onset Crohn’s Disease” (Press release). UCB. October 23, 2006. Retrieved 2009-11-15.
  13. ^ Sieper J, Tubergen A, Coteur G, Woltering F, Landewe R (May 2013). “PMS50 – Rapid Improvements In Patient-Reported Outcomes With Certolizumab Pegol In Patients With Axial Spondyloarthritis, Including Ankylosing Spondylitis And Non-Radiographic Axial Spondyloarthritis: 24-Week Results Of A Phase 3 Double Blind Randomized Placebo-Controlled Study”. Value in Health16 (3): A227. doi:10.1016/j.jval.2013.03.1150.
  14. Jump up to:a b Ruiz Garcia, V; Jobanputra, P; Burls, A; Vela Casasempere, P; Bort-Marti, S; Bernal, JA (Sep 8, 2017). “Certolizumab pegol (CDP870) for rheumatoid arthritis in adults”(PDF)The Cochrane Database of Systematic Reviews9: CD007649. doi:10.1002/14651858.CD007649.pub4PMID 28884785.

External links

FDA approves treatment Cimzia (certolizumab pegol) for patients with a type of inflammatory arthritis

March 28, 2019

Release

The U.S. Food and Drug Administration today approved Cimzia (certolizumab pegol) injection for treatment of adults with a certain type of inflammatory arthritis called non-radiographic axial spondyloarthritis (nr-axSpA), with objective signs of inflammation. This is the first time that the FDA has approved a treatment for nr-axSpA.

“Today’s approval of Cimzia fulfills an unmet need for patients suffering from non-radiographic axial spondyloarthritis as there has been no FDA-approved treatments until now,” said Nikolay Nikolov, M.D., associate director for rheumatology of the Division of Pulmonary, Allergy, and Rheumatology Products in the FDA’s Center for Drug Evaluation and Research.

Nr-axSpA is a type of inflammatory arthritis that causes inflammation in the spine and other symptoms. There is no visible damage seen on x-rays, so it is referred to as non-radiographic.

The efficacy of Cimzia for the treatment of nr-axSpA was studied in a randomized clinical trial in 317 adult patients with nr-axSpA with objective signs of inflammation, indicated by elevated C-reactive protein (CRP) levels and/or sacroiliitis (inflammation of the sacroiliac joints) on MRI. The trial measured the improvement response on the Ankylosing Spondylitis Disease Activity Score, a composite scoring system that assesses disease activity including patient-reported outcomes and CRP levels. Responses were greater for patients treated with Cimzia compared to patients treated with placebo. The overall safety profile observed in the Cimzia treatment group was consistent with the known safety profile of Cimzia.

The prescribing information for Cimzia includes a Boxed Warning to advise health care professionals and patients about the increased risk of serious infections leading to hospitalization or death including tuberculosis (TB), bacterial sepsis (infection in the blood steam), invasive fungal infections (such as histoplasmosis, an infection that affects the lungs), and other infections. Cimzia should be discontinued if a patient develops a serious infection or sepsis. Health care providers are advised to perform testing for latent TB and, if positive, to start treatment for TB prior to starting Cimzia. All patients should be monitored for active TB during treatment, even if the initial latent TB test is negative. The Boxed Warning also advises that lymphoma (cancer in blood cells) and other malignancies, some fatal, have been reported in children and adolescent patients treated with tumor necrosis factor (TNF) blockers, of which Cimzia is a member. Cimzia is not indicated for use in pediatric patients. Cimzia must be dispensed with a patient Medication Guide that describes important information about the drug’s uses and risks.

Cimzia was originally approved in 2008 and is also indicated for adult patients with Crohn’s disease, moderate-to-severe rheumatoid arthritis, active ankylosing spondylitis (AS) and moderate-to-severe plaque psoriasis who are candidates for systemic therapy or phototherapy.

The FDA granted the approval of Cimzia to UCB.

Certolizumab pegol
Syringe with Certolizumab pegol-1800.jpg
Syringe with 200mg Certolizumab pegol
Monoclonal antibody
Type Fab’ fragment
Source Humanized (from mouse)
Target TNF alpha
Clinical data
Trade names Cimzia
AHFS/Drugs.com Consumer Drug Information
MedlinePlus a608041
License data
Pregnancy
category
  • US: B (No risk in non-human studies)
Routes of
administration
Subcutaneous
ATC code
Legal status
Legal status
Pharmacokinetic data
Elimination half-life about 11 days
Excretion Renal (PEG only)
Identifiers
CAS Number
ChemSpider
  • none
UNII
KEGG
ChEMBL
Chemical and physical data
Formula C2115H3252N556O673S16
Molar mass 47,750 g/mol g·mol−1

///////////////FDA 2019, Cimzia, certolizumab pegol, inflammatory arthritis, UCB

https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm634671.htm?utm_campaign=032819_PR_FDA%20approves%20treatment%20for%20patients%20with%20a%20type%20of%20inflammatory%20arthritis&utm_medium=email&utm_source=Eloqua

E 2212

$
0
0

str1

C25 H23 F3 N6 O, 480.48

CAS 1123197-68-1

(+) -2-{(E)-2-[5-methoxy-6-(4-methyl-1H-imidazol-1-yl)pyridin-3-yl]vinyl}-8-(2-trifluoromethylphenyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[1,5-a]pyridine

  • (+)-5,6,7,8-Tetrahydro-2-[(1E)-2-[5-methoxy-6-(4-methyl-1H-imidazol-1-yl)-3-pyridinyl]ethenyl]-8-[2-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyridine
  • (+)-2-[(E)-2-[5-Methoxy-6-(4-methyl-1H-imidazol-1-yl)pyridin-3-yl]ethenyl]-8-(2-trifluoromethylphenyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[1,5-a]pyridine

Figure

E2212

CAS 1123197-82-9

  • C25 H23 F3 N6 O . 3/2 C4 H6 O6
  • [1,2,4]Triazolo[1,5-a]pyridine, 5,6,7,8-tetrahydro-2-[(1E)-2-[6-methoxy-5-(4-methyl-1H-imidazol-1-yl)-2-pyridinyl]ethenyl]-8-[2-(trifluoromethyl)phenyl]-, (8S)-, (2S,3S)-2,3-dihydroxybutanedioate (2:3)

PATENT

https://patents.google.com/patent/US9453000B2/en

Examples 394 and 395 Synthesis of (+) and (−)-2-{(E)-2-[5-methoxy-6-(4-methyl-1H-imidazol-1-yl)pyridin-3-yl]vinyl}-8-(2-trifluoromethylphenyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[1,5-a]pyridine

Figure US09453000-20160927-C00296

230 mg of the racemic title compound was obtained from 1-amino-3-(2-trifluoromethylphenyl)piperidin-2-one (343 mg) and (E)-3-[5-methoxy-6-(4-methyl-1H-imidazol-1-yl)pyridin-3-yl]acrylic acid (500 mg) by the same method as in Examples 194 and 195. The racemic title compound (220 mg) was separated by CHIRALPAK™ IC manufactured by Daicel Chemical Industries, Ltd. (2 cm×25 cm; mobile phase: methanol) to obtain the title optically active compound with positive optical rotation and a retention time of 16 minutes (92 mg) and the title optically active compound with negative optical rotation and a retention time of 19 minutes (79 mg).

The property value of the title optically active compound with a retention time of 16 minutes is as follows.

ESI-MS; m/z 481 [M++H].

The property values of the title optically active compound with a retention time of 19 minutes are as follows.

ESI-MS; m/z 481 [M++H]. 1H-NMR (CDCl3) δ (ppm): 1.90-2.01 (m, 1H), 2.10-2.35 (m, 2H), 2.29 (s, 3H), 2.43-2.52 (m, 1H), 3.95 (s, 3H), 4.27-4.41 (m, 2H), 4.69 (dd, J=6.0, 8.4 Hz, 1H), 7.02 (d, J=8.0 Hz, 1H), 7.08 (d, J=16.4 Hz, 1H), 7.40 (dd, J=7.6, 7.6 Hz, 1H), 7.44-7.53 (m, 4H), 7.73 (d, J=8.0 Hz, 1H), 8.13 (d, J=1.6 Hz, 1H), 8.34 (s, 1H).

PATENT

WO2009028588

https://patentscope.wipo.int/search/en/detail.jsf;jsessionid=D6AD22B6CC7302560AE1ADCED305CDCE.wapp2nC?docId=WO2009028588&tab=FULLTEXT&queryString=%28PA%2Feisai%29%2520&recNum=93&maxRec=725
(+)および(-)-2-{(E)-2-[5-メトキシ-6-(4-メチル-1H-イミダゾール-1-イル)ピリジン-3-イル]ビニル}-8-(2-トリフルオロメチルフェニル)-5,6,7,8-テトラヒドロ-[1,2,4]トリアゾロ[1,5-a]ピリジンの合成
[化221]

実施例194および実施例195と同様の方法により、1-アミノ-3-(2-トリフルオロメチルフェニル)ピペリジン-2-オン(343mg)および(E)-3-[5-メトキシ-6-(4-メチル-1H-イミダゾール-1-イル)ピリジン-3-イル]アクリル酸(500mg)から、ラセミ体の表題化合物を230mg得た。ラセミ体の表題化合物(220mg)をダイセル製CHIRALPAK TM IC(2cm×25cm:移動相;メタノール)にて分取し、(+)の旋光性を有する保持時間16分の表題光学活性化合物(92mg)および(-)の旋光性を有する保持時間19分の表題光学活性化合物(79mg)を得た。
保持時間16分の表題光学活性体の物性値は以下の通りである。
ESI-MS;m/z 481[M +H].
保持時間19分の表題光学活性体の物性値は以下の通りである。
ESI-MS;m/z 481[M +H]. H-NMR(CDCl )δ(ppm):1.90-2.01(m,1H),2.10-2.35(m,2H),2.29(s,3H),2.43-2.52(m,1H),3.95(s,3H),4.27-4.41(m,2H),4.69(dd,J=6.0,8.4Hz,1H),7.02(d,J=8.0Hz,1H),7.08(d,J=16.4Hz,1H),7.40(dd,J=7.6,7.6Hz,1H),7.44-7.53(m,4H),7.73(d,J=8.0Hz,1H),8.13(d,J=1.6Hz,1H),8.34(s,1H).

Example 394 and Example 395
(+) and (−)-2-{(E) -2- [5-methoxy-6- (4-methyl-1H-imidazol-1-yl) pyridin-3-yl] Synthesis of vinyl} -8- (2-trifluoromethylphenyl) -5,6,7,8-tetrahydro- [1,2,4] triazolo [1,5-a] pyridine [Formula
221]

Example 194 and By a method similar to Example 195, 1-amino-3- (2-trifluoromethylphenyl) piperidin-2-one (343 mg) and (E) -3- [5-methoxy-6- (4-methyl-) 1 H-Imidazol-1-yl) pyridin-3-yl] acrylic acid (500 mg) gave 230 mg of the racemic title compound. Racemic title compound (220 mg) a Daicel CHIRALPAK TM IC (2 cm × 25 cm: mobile phase; methanol) was collected by min (+) title optically active compound of the retention time of 16 minutes with a optical rotation of (92 mg) The title optically active compound (79 mg) having a polarizability of (−) and a retention time of 19 minutes was obtained.
The physical property values of the title optically active substance with a retention time of 16 minutes are as follows.
ESI-MS; m / z 481 [M + + H].
The physical property values of the title optically active substance with a retention time of 19 minutes are as follows.
ESI-MS; m / z 481 [M + + H]. 1 H-NMR (CDCl 3)) Δ (ppm): 1.90 to 2.01 (m, 1 H), 2.10 to 2.35 (m, 2 H), 2.29 (s, 3 H), 2.43 to 2.52 (m) , 1 H), 3.95 (s, 3 H), 4.27-4. 41 (m, 2 H), 4.69 (dd, J = 6.0, 8.4 Hz, 1 H), 7.02 (d , J = 8.0 Hz, 1 H), 7.08 (d, J = 16.4 Hz, 1 H), 7.40 (dd, J = 7.6, 7.6 Hz, 1 H), 7.44-7. 53 (m, 4H), 7.73 (d, J = 8.0 Hz, 1 H), 8.13 (d, J = 1.6 Hz, 1 H), 8.34 (s, 1 H).

PATENT

https://patents.google.com/patent/WO2010098490A1/it

str1

As a novel compound that has an effect of reducing the production of Aβ40 and

42 and is expected as a therapeutic or prophylactic agent for Alzheimer’s disease or the like, the present inventors have found a compound represented by the following formula (1) (compound

(D): [Formula 1]

and filed a patent application for the invention (PCT/JP08/065365).

Generally, properties of salts of compounds and those crystals that are useful as pharmaceuticals are highly important for the development of pharmaceuticals, because the properties greatly affect bioavailability of drugs, purity of drug substances, formulation of preparations, and the like. Therefore, it is necessary to research which salts and crystal forms of the compound of the formula (1) are most excellent as pharmaceuticals. Specifically, since their properties depend on the character of the individual compounds, it is generally difficult to estimate salts and crystal forms for drug substances having excellent properties and it is demanded to actually make various studies for each compound.

EXAMPLES [0023] The present invention will be described in detail below with reference to reference examples and examples; however, the present invention is not limited to these reference examples and examples. [0024]

The following abbreviations are used in the following reference examples and examples.

DMF: N,N’-dimethylformamide

THF: Tetrahydrofuran

EDC: lrEmyl-S-β-dimemylammopropytycarbodiimide hydrochloride HOBT: 1-Hydroxybenzotriazole IPEA: Diisopropylethylamine [0025]

In powder X-ray diffractometry of the crystals produced in the following examples, the resulting crystals were placed on a sample stage of a powder X-ray diffractometer and analyzed under the following conditions. [0026] Measurement conditions

Sample holder: Aluminum Target: Copper

Detector: Scintillation counter Tube voltage: 50 kV Tube current: 300 mA

Slit: DS 0.5 mm (Height limiting slit 2 mm), SS Open, RS Open Scanning rate : 5 °/min

Sampling interval: 0.02° Scan range: 5 to 35° Goniometer: Horizontal goniometer [0027] Reference Example 1

Svnmesis ofr8SV2-(fE)-246-memoxy-5-(4-memyl-lH-imidazol-l-vnpyridin-2-yllvmvU-8-(2-trifluoromethylphenyl)-5,6J,8-tetrahvdro-[1.2,41triazolo[l.,5-a]pyridine

[Formula 2]

Synthesis of l-amino-3-(2-trifluoromemylphenyl)piperidin-2-one Thionyl chloride (2.72 mL) was added to a solution of 2-trifluoromethylphenylacetic acid (1.9 g) in methanol (38 mL), followed by stirring at room temperature for three hours. The reaction solution was concentrated under reduced pressure. The resulting residue was diluted with DMF. Sodium hydride (containing 40% mineral oil, 410 mg) was added under ice-cooling, followed by stirring for 10 minutes. The reaction solution was further stirred for 30 minutes and then ice-cooled again. l-Chloro-3-iodopropane (1.02 mL) was added to the reaction mixture, and the reaction solution was stirred at room temperature overnight. Water and ethyl acetate were added to the reaction mixture, and the organic layer was separated. The resulting organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and then concentrated under reduced pressure. The resulting residue was diluted with ethanol (26.6 mL). Hydrazine monohydrate (7.6 mL) was added, and the reaction solution was stirred at room temperature for two hours and then at 60°C for further three hours. The reaction mixture was concentrated under reduced pressure. Saturated aqueous sodium bicarbonate and ethyl acetate and were added to the residue, and the organic layer was separated. The resulting organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography (carrier: Chromatorex NH; elution solvent: heptane-ethyl acetate system) to obtain 1.68 g of the title compound. The property values of the compound are as follows.

ESI-MS; m/z 259 [M+H-H]. 1H-NMR (CDCl3) δ (ppm): 1.82-2.10 (m, 3H), 2.18-2.26 (m, IH), 3.58-3.76 (m, 2H), 4.07 (dd, J = 10.0, 5.6 Hz, IH), 4.60 (s, 2H), 7.24 (d, J = 7.6 Hz, IH), 7.35 (t, J = 7.6 Hz, IH), 7.51 (t, J = 7.6 Hz, IH)5 7.66 (d, J = 7.6 Hz, IH). [0028] Synthesis of (EV3-[6-methoxy-5-(4-methyl- 1 H-imidazol- 1 -yl)pyridin-2-yl]-N-f2-oxo-3 -(2-trifluoromethylphenyl)piperidin- 1 -yl]acrylamide

EDC (834 mg), HOBT (588 mg) and IPEA (2.03 mL) were added to a suspension of (E)-3-[6-methoxy-5-(4-methyl-lH-imidazol-l-yl)pyridm-2-yl]acrylic acid trifluoroacetate (1.42 g) and l-amήio-3-(2-trifluoromethylphenyl)piperidin-2-one (750 mg) in DMF (30 mL). After stirring at room temperature for 14 hours, a saturated sodium bicarbonate solution and ethyl acetate were added to the reaction solution, and the organic layer was separated. The resulting organic layer was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography (carrier: Chromatorex NH; elution solvent: ethyl acetate-methanol system) to obtain 1.23 g of the title compound. The property values of the compound are as follows. ESI-MS; m/z 500 [M1H-HJ. [0029]

Synthesis of r8S>-2-(fEV2-r6-methoxy-5-r4-methyl-lH-imidazol-l-vnpyridm’2-vnvinvU-8-(2-trifluoromethvlphenvD-5.6.7.8-tetrahvdro-ri.2.41triazoloπ.5-a1pvridine Phosphorus oxychloride (24.2 mL) was added to (E)-3~[6-methoxy-5-(4-methyl-lH-imidazol-l-yl)pyridin-2-yl]-N-[2-oxo-3-(2-trifluoromethylphenyl)piperidin-l-yl]acrylamide (1.2 g). The reaction solution was stirred at 1000C for one hour and then concentrated under reduced pressure. Subsequently, the residue was diluted with acetic acid (24.2 mL) and then ammonium acetate (1.9 g) was added, followed by stirring at 1500C for two hours. The reaction solution was left to cool to room temperature and then concentrated under reduced pressure. A saturated sodium bicarbonate solution and ethyl acetate were added to the resulting residue, and the organic layer was separated. The resulting organic layer was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography (carrier: Chromatorex NH; elution solvent: heptane-ethyl acetate system) to obtain a racemate of the title compound (750 mg). The resulting racemate (410 mg) was separated by CHIRALP AK™ IA manufactured by Daicel Chemical Industries, Ltd. (2 cm x 25 cm, mobile phase: hexane:ethanol = 8:2, flow rate: 10 mL/min) to obtain the title compound with a retention time of 33 minutes and negative optical rotation (170 mg) as crystals. The property values of the title compound are as follows.

1H-NMR (CDCl3) δ (ppm): 1.90-2.01 (m, IH), 2.10-2.35 (m, 2H), 2.29 (d, J = 1.2 Hz, 3H), 2.42-2.51 (m, IH), 4.03 (s, 3H), 4.28-4.41 (m, 2H), 4.70 (dd, J = 8.4, 6.0 Hz, IH), 6.92 (d, J = 8.0 Hz, IH), 6.95 (t, J = 1.2 Hz, IH), 7.01 (d, J = 7.6 Hz, IH), 7.39 (t, J = 7.6 Hz5 IH), 7.44 (d, J = 16.0 Hz, IH), 7.45 (d, J = 8.0 Hz, IH), 7.49 (t, J = 7.6 Hz, IH), 7.63 (d, J = 16.0 Hz5 IH), 7.72 (d, J = 7.6 Hz, IH), 7.76 (d, J = 1.2 Hz, IH). [0030]

(8S)-2-{(E)-2-[6-Methoxy-5-(4-methyl-lH-imidazol-l-yl)ρyridin-2-yl]vinyl}-8-(2-trifluoromethylphenyl)-5,6,7,8-tetrahydro-[l,2,4]triazolo[l,5-a]pyridine synthesized according to the above reference example was used for the following synthesis of salts. [0031] Example 1

Synthesis of r8SV2-{rEV2-[6-methoxy-5-(4-methyl-lH-imidazol-l-vπpyridin-2-vnvinvU-8-f2-trifluoromethylphenyl)-5.6.7.8-tetrahvdro-fl,2,4]triazolo[l.,5-a]pyridine 1.5 D-tartrate

(8S)-2-{(E)-2-[6-methoxy-5-(4-methyl-lH-imidazol-l-yl)pyridin-2-yl]vinyl}-8-(2-trifluoromethylphenyl)-5,6,7,8-tetrahydro-[l,2,4]triazolo[l,5-a]pyridine (33.70 mg) was dissolved in 285 μL of a D-tartaric acid-ethanol solution (110.92 mg/3 mL) with stirring at room temperature. The oil was precipitated when 1 mL of heptane was added. Accordingly, the oily substance was dissolved by adding 1 mL of ethanol. Further, 0.5 mL of heptane was added, and the mixture was transferred to a low temperature laboratory at about 50C (under shading) and continuously stirred for 24 hours. Thus, partial gelation occurred. Thereafter, the mixture was brought back to room temperature and continuously stirred, resulting in precipitation of a solid. The solid was collected by filtration through a glass filter and dried under reduced pressure at room temperature to obtain 21.25 mg of the title compound as white solid crystals. 1H-NMR (600 MHz, DMSOd6) δ (ppm): 1.96 (m, IH), 2.14 (s, 3H), 2.16 (m, 2H), 2.29 (m, IH), 3.98 (s, 3H), 4.28 (m, 2H), 4.29 (s, 3H), 4.51 (dd, J = 9, 6 Hz, IH), 7.22 (s, IH), 7.25 (brd, J = 8 Hz, IH), 7.27 (d, J = 8 Hz, IH), 7.32 (d, J = 16 Hz, IH)5 7.46 (d, J = 16 Hz, IH), 7.49 (brdd, J = 8 Hz, IH), 7.61 (brdd, J = 8 Hz5 IH), 7.77 (brd, J = 8 Hz, IH), 7.78 (d, J = 8 Hz, IH), 7.91 (s, IH). [0032] Example 2

Synthesis of (8SV2-l(Ε)-2-f6-methoxy-5-(4-methyl-lH-imidazol-l-vnpyridm-2-yllvinyl>-8-f2-trifluoromethylphenylV5,6J,8-tetrahvdro-[l ,2,4]triazolo[l ,5-a]pyridine di-D-tartrate

(8S)-2-{(E)-2-[6-methoxy-5-(4-methyl-lH-imidazol-l-yl)pyridin-2-yl]vinyl}-8-(2-trifluoromethylphenyl)-5,657,8-tetrahydro-[l ,2,4]triazolo[l ,5-a]ρyridine (810.18 mg) was dissolved in 8 mL of a D-tartaric acid-ethanol solution (751.13 mg/10 mL) with stirring at room temperature. The oil was precipitated when 2 mL of heptane was added. Accordingly, the oily substance was dissolved by ultrasonic treatment to prepare a clear solution. Several mg of crystals of the 1.5 D-tartrate prepared according to Example 1 were added, followed by stirring at room temperature. Stirring for about one hour resulted in gelation and subsequent precipitation of a solid. Further, stirring was continued while gradually adding 14 mL of heptane. A part of the suspension (2 mL) was separated and the solid was collected by filtration through a glass filter. The solid was dried under reduced pressure at room temperature to obtain 71.14 mg of the title compound as white solid crystals. 1H-NMR (400 MHz, DMSOd6) δ (ppm): 1.97 (m, IH), 2.15 (s, 3H), 2.16 (m, 2H), 2.30 (m, IH), 3.98 (s, 3H), 4.28 (m, 2H), 4.29 (s, 4H), 4.51 (dd, J = 9, 6 Hz, IH), 7.22 (brs, IH), 7.25 (brd, J = 8 Hz, IH), 7.27 (d, J = 8 Hz, IH), 7.32 (d, J = 16 Hz, IH), 7.46 (d, J = 16 Hz, IH), 7.49 (brdd, J – 8 Hz, IH), 7.61 (brdd, J = 8 Hz, IH), 7.77 (brd, J = 8 Hz, IH), 7.78 (d, J = 8 Hz, IH), 7.91 (brs, IH). [0033] Example 3

Synthesis of r8SV2-(rE)-2-r6-methoxy-5-r4-methyl-lH-imidazol-l-vnpyridin-2-yl1vinvU-8-α-trifluoromethylphenyl)-5,6J,8-tetrahydro-[1.2,4]triazolo[l,5-a]pyridine disulfate

Concentrated sulfuric acid (11.5 μL) was added to a solution of (8S)-2-{(E)-2-[6- methoxy-5-(4-methyl-lH-imidazol-l-yl)pyridin-2-yl]vinyl}-8-(2-txifluoromethylphenyl)-5,6,7,8-tetrahydro-[l52,4]triazolo[l55-a]pyridine (98.09 mg) in ethanol (1 mL), and 1 mL of ethyl acetate was added with stirring at room temperature. Since the oily portion was confirmed on the bottom of the recovery flask, the oily substance was dissolved by ultrasonic treatment. Stirring at room temperature under shading for about 30 minutes resulted in precipitation of a solid. The solid was collected by filtration through a glass filter and dried under reduced pressure at room temperature to obtain 127.94 mg of the title compound as white solid crystals. 1H-NMR (400 MHz, DMSOd6) δ (ppm): 1.97 (m, IH), 2.17 (m, 2H), 2.30 (m, IH), 2.34 (brd, J = 1 Hz, 3H), 4.01 (s, 3H), 4.29 (m, 2H), 4.52 (dd, J = 9, 6 Hz, IH)5 7.25 (brd, J = 8 Hz, IH), 7.37 (d, J = 16 Hz, IH), 7.40 (d, J = 8 Hz, IH), 7.50 (brdd, J = 8 Hz, IH), 7.55 (d, J = 16 Hz, IH), 7.61 (brdd, J = 8 Hz, IH), 7.77 (m, IH), 7.78 (m, IH), 8.00 (d, J = 8 Hz, IH), 9.36 (d, J = 2 Hz, IH). [0034] Example 4 Synthesis of (8SV2-((E)-2-[6-methoxy-5-(4-methyl-lH-imidazol-l-ylN)ρyridin-2-yllvinvU-8-(2-trifluoromethylphenyl)-5,6,7,8-tetrahvdiO-[1.2,41triazolo[l,5-a]pyridine dihydrobromide

Concentrated hydrobromic acid (24.8 μL) was added to a solution of (8S)-2-{(E)-2-[6-methoxy-5-(4-methyl-lH-imidazol-l-yl)pyridin-2-yl]vinyl}-8-(2-trifluoromethylphenyl)-5,6,7,84etrahydro-[l,254]triazolo[l55-a]pyridine (51.42 mg) m ethanol (1 mL), and 1 mL of heptane was added with stirring at room temperature. After several minutes, 1 mL of heptane was further added to the solution and stirring was continued. The solution was stirred at room temperature for one hour and then further stirred at about 50C for 20 minutes. The precipitated solid was collected by filtration through a glass filter and dried under reduced pressure at room temperature to obtain 49.24 mg of the title compound as white solid crystals. 1H-NMR (400 MHz, DMSO-d6) δ (ppm): 1.99 (m, IH), 2.17 (m, 2H), 2.30 (m, IH), 2.34 (brd, J = 1 Hz5 3H), 4.01 (s, 3H), 4.30 (m, 2H), 4.52 (dd, J = 9, 6 Hz5 IH), 7.25 (brd, J = 8 Hz5 IH), 7.37 (d, J = 16 Hz, IH), 7.40 (d, J = 7 Hz, IH)57.50 (brdd, J = 8 Hz, IH), 7.55 (d, J = 16 Hz, IH), 7.61 (brdd, J = 8 Hz5 IH), 7.77 (m, IH)5 7.78 (m, IH), 8.00 (d, J = 7 Hz, IH), 9.37 (d, J = 2 Hz, IH). [0035] Example 5

Synthesis of r8SV2-((Ε)-2-r6-methoxy-5-r4-methyl-lH-imidazol-l-yl)ρyridin-2-vnvinyl}-8-r2-trifluoromethylphenyl)-5,6J,8-tetrahvdro-[1.2,41triazolo[1.5-alpyridine hydrochloride

Concentrated hydrochloric acid (3.6 μL) was added to a solution of (8S)-2-{(E)- 2-[6-methoxy-5-(4-metiiyl-lH-imidazol-l-yl)pyridin-2-yl]vinyl}-8-(2-trifluoromethylplienyl)-5,6,7,8-te1xahydro-[l,2,4]triazolo[l,5-a]pyridme (19.80 mg) in 2-propanol (1 mL), and a total of 4 mL of heptane was added in 1 mL portions with stirring at room temperature. The solution was stirred at room temperature under shading for five days. The precipitated solid was collected by filtration through a glass filter and dried under reduced pressure at room temperature to obtain 7.45 mg of the title compound as white solid crystals. 1H-NMR (400 MHz, DMSOd6) δ (ppm): 1.97 (m, IH), 2.17 (m, 2H)5 2.30 (m, IH), 2.30 (s, 3H), 4.00 (s, 3H), 4.30 (m, 2H)5 4.52 (dd, J = 9, 6 Hz5 IH), 7.25 (brd, J – 8 Hz5 IH), 7.36 (d, J = 16 Hz5 IH), 7.37 (d5 J = 8 Hz, IH), 7.50 (brt, J = 8 Hz5 IH)5 7.53 (d, J = 16 Hz5 IH)5 7.61 (brt, J = 8 Hz5 IH)5 7.66 (brs, IH), 7.77 (brd, J = 8 Hz, IH)5 7.96 (d, J = 8 Hz5 IH), 9.06 (brs, IH). [0036] Example 6

Synthesis of (8S)-2-((ΕV2-r6-methoxy-5-(4-methyl-lH-imidazol-l-yl)pyridin-2-yl1vinvU-8-(2-trifluoromethylphenyl)-5.6,7,8-tetrahvdro-[l,2,4]triazolo[L5-a1pyridine hydrochloride Concentrated hydrochloric acid (14.3 μL) and heptane (7 mL) were added to a solution of (8S)-2-{(E)-2-[6-methoxy-5-(4-methyl-lH-imidazol-l-yl)pyridin-2-yl]vinyl}-8-(2-trifluoromethylphenyl)-5,657,8-tetrahydro-[l,2,4]triazolo[l,5-a]pyridine (79.77 mg) in 2-propanol (3 mL). A small amount of the crystals obtained in Example 5 were added as seed crystals with stirring at room temperature. The mixture was transferred to a low temperature laboratory at about 50C and stirred for one hour. Thereafter, 1 mL of heptane was further added, followed by stirring for several minutes. When the precipitated solid was collected by filtration through a glass filter, the solid was precipitated in the filtrate. The precipitated solid was collected by filtration through a glass filter and dried under reduced pressure at room temperature to obtain 38.02 mg of the title compound as white solid crystals. 1H-NMR (400 MHz, DMSO-d6) δ (ppm): 1.97 (m, IH), 2.17 (m5 2H), 2.29 (m, IH), 2.32 (brd, J = 1 Hz, 3H), 4.00 (s, 3H), 4.30 (m, 2H), 4.52 (dd, J = 9, 6 Hz, IH), 7.25 (brd, J = 8 Hz, IH), 7.37 (d, J = 16 Hz5 IH), 7.38 (d, J = 8 Hz, IH), 7.50 (brdd, J = 8 Hz, IH)5 7.54 (d, J = 16 Hz, IH), 7.61 (brdd, J = 8 Hz, IH), 7.72 (brs, IH), 7.77 (brd, J = 8 Hz, IH), 7.98 (d, J = 8 Hz5 IH)5 9.24 (brs, IH). [0037] Example 7

SvnJhesis off8SV2-f(E>2-r6-memoxy-5-(4-mefovπ trifluoromethylt>henylV5,6,7,8-tetrahvdro-[l,2,4]triazolo[l,5-a]pyridine mesylate

Mesylic acid (0.8 μL) was added to a mixed solution of (8S)-2-{(E)-2-[6- methoxy-5-(4-methyl-lH-imidazol-l-yl)pyridin-2-yl]vinyl}-8-(2-trifluoromethylphen^ tetrahydro-[l52,4]triazolo[l,5-a]pyridine (50 mg) in t-butyl methyl ether (0.8 mL)-ethaαol (0.1 mL). The mixture was solidified as a result of stirring at room temperature for two hours. The solid was collected by filtration through a glass filter. The solid was washed with t-butyl methyl ether-ethanol (8:1) and then dried under reduced pressure at room temperature to obtain 51.9 mg of the title compound as pale yellow solid crystals.

1H-NMR (DMSO-d6) δ (ppm): 1.90-2.05 (m, IH)3 2.10-2.22 (m, 2H), 2.28-2.40 (m, IH), 2.31 (s, 3H), 2.35 (s, 3H)5 4.02 (s, 3H)5 4.25-4.39 (m, 2H), 4.50-4.55 (m, IH), 7.27 (d5 J = 8.0 Hz5 IH)5 7.38 (d, J = 16.0 Hz5 IH)5 7.41 (d, J = 8.0 Hz, IH)5 7.51 (t5 J = 8.0 Hz5 IH)5 7.55 (d, J = 16.0 Hz5 IH), 7.63 (t, J = 8.0 Hz5 IH)5 7.78 (d, J = 8.0 Hz5 IH)5 7.79 (s, IH), 8.01 (d, J = 8.0 Hz5 IH), 9.37 (s, IH). [0038] Example 8 Synthesis of (8S)-2-((ΕV2-r6-methoxy-5-(4-methyl-lH-imidazol-l-vnpyridin-2-vnvinvn-8-r2-trifluoromethylphenyl)-5.6,7,8-tetrahydro-[l.,2,4|triazolo[l,5-a]pyridine diphosphate

A solution of phosphoric acid (52.8 mg) in acetonitrile (0.2 mL) was added to a solution of (8S)-2-{(E)-2-[6-methoxy-5-(4-methyl-lH-mτidazol-l-yl)ρyridin-2-yl]vinyl}-8-(2-trifluoromethylphenyl)-5565758-tetrahydro-[l5254]triazolo[l,5-a]pyridine (100 mg) in acetonitrile (0.8 mL) at room temperature. The precipitated oil was solidified as a result of stirring with spatula. The solid was collected by filtration through a glass filter. The solid was washed with ice-cold acetonitrile, air-dried at room temperature for 10 minutes and then dried under reduced pressure at room temperature to obtain 120 mg of the title compound as white solid crystals. 1H-NMR (DMSO-d6) δ (ppm): 1.90-2.05 (m, IH), 2.11-2.20 (m, 2H), 2.15 (s, 3H), 2.25-2.35 (m, IH), 3.99 (s, 3H)5 4.24-4.39 (m, 2H), 4.50-4.55 (m, IH)5 7.23 (s, IH), 7.26 (d, J = 7.0 Hz, IH), 7.28 (d, J = 8.0 Hz, IH), 7.33 (d, J = 16.0 Hz5 IH), 7.47 (d, J = 16.0 Hz5 IH), 7.51 (t, J = 7.0 Hz, IH), 7.63 (t, J = 7.0 Hz, IH), 7.78 (d, J = 7.0 Hz, IH), 7.79 (d, J = 8.0 Hz, IH), 7.90 (s, IH). [0039] Example 9 Svnmesis of(8SV2-{(E)-2-[6-memoxy-5-(4-methyl-lH-irnidazol-l-yl)pyridin-2-yl1vinvU-8-(2-trifluoromethylphenyl)-5,6,7,8-tetrahvdro-[l .2.41triazolo[l .5-a]pyridine diphosphate

A solution of phosphoric acid (13.2 mg) in ethanol (0.05 mL) was added to a mixed solution of (8S)-2-{(E)-2-[6-methoxy-5-(4-methyl-lH-imidazol-l-yl)pyridin-2-yl]vinyl}-8-(2-trifluoromethylphenyl)-5,6,7,8-tetrahydro-[l,2!,4]triazolo[l,5-a]pyridme (50 mg) in heptane (0.6 mL)-ethanol (0.15 mL) at room temperature. The reaction solution was stirred at room temperature, and the precipitated solid was collected by filtration through a glass filter. The solid was washed with heptane-ethanol (3:1) and then dried under reduced pressure at room temperature to obtain 37.6 mg of the title compound as white solid crystals. 1H-NMR (DMSOd6) δ (ppm): 1.90-2.05 (m, IH), 2.11-2.20 (m, 2H), 2.15 (s, 3H), 2.25-2.35 (m, IH), 3.99 (s, 3H), 4.24-4.39 (m, 2H), 4.50-4.55 (m, IH), 7.23 (s, IH), 7.26 (d, J = 7.0 Hz, IH), 7.28 (d, J = 8.0 Hz, IH), 7.33 (d, J = 16.0 Hz, IH), 7.47 (d, J = 16.0 Hz, IH), 7.51 (t, J = 7.0 Hz, IH), 7.63 (t, J = 7.0 Hz, IH), 7.78 (d, J = 7.0 Hz, IH), 7.79 (d, J = 8.0 Hz, IH), 7.90 (s, IH).

CLIP

Development of an Efficient Manufacturing Process for E2212 toward Rapid Clinical Introduction

 API Research Japan, Pharmaceutical Science & Technology, CFU, Medicine Development CenterEisai Co. Ltd.5-1-3-Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
 API Research Japan, Pharmaceutical Science & Technology, CFU, Medicine Development CenterEisai Co. Ltd.22-Sunayama, Kamisu-shi, Ibaraki 314-0255, Japan
§ Neurology Tsukuba Research Department, Discovery, Medicine Creation, NBGEisai Co. Ltd.5-1-3-Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
 Integrated ChemistryEisai AiM Institute4 Corporate Drive, Andover, Massachusetts 01810, United States
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.8b00444
This article is part of the Japanese Society for Process Chemistry special issue.
Abstract Image

Process studies of E2212 (1) toward rapid clinical introduction are described. Through comprehensive route-finding studies and optimization of key condensation and cyclization steps, a racemate-based manufacturing route was established and successfully scaled-up to the hundred kilogram scale. For the rapid delivery of a drug substance containing the Z isomer for preclinical safety studies, the successful scale-up of the photoisomerization of an olefin in a flow system is also presented.

https://pubs.acs.org/doi/10.1021/acs.oprd.8b00444

E2212 (1) (18.0 kg, 92.5% yield) as a white solid. Mother liquor 3 were recycled according to the procedure described below. FTIR (cm–1, KBr) 3461, 3173, 2956, 1734, 1584, 1536, 1476, 1309, 1130, 835, 765, 752; 1H NMR (600 MHz, DMSO-d6) δ 7.91 (s, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.77 (br d, J = 8.4 Hz, 1H), 7.61 (br dd, J = 7.8, 7.8 Hz, 1H), 7.49 (br dd, J = 7.8, 7.8 Hz, 1H), 7.46 (d, J= 15.6 Hz, 1H), 7.32 (d, J = 15.6 Hz, 1H), 7.27 (d, J = 7.8 Hz, 1H), 7.25 (br d, J = 7.8 Hz, 1H), 7.22 (s, 1H), 4.51 (dd, J = 9.0, 6.0 Hz, 1H), 4.29 (s, 3H), 4.28 (m, 2H), 3.98 (s, 3H), 2.29 (m, 1H), 2.14 (s, 3H), 2.16 (m, 2H), 1.96 (m, 1H); 13C NMR (150 MHz, DMSO-d6) δ 173.3, 159.3, 155.4, 155.0, 150.1, 141.1, 137.1, 136.9, 133.6, 132.9, 131.0, 130.5, 127.6, 127.1 (q, JC–F = 30 Hz), 125.8 (q, JC–F = 5.6 Hz), 124.7 (q, JC–F = 270 Hz), 122.2, 120.7, 117.2, 116.5, 72.3, 53.7, 47.0, 37.6, 30.7, 21.3, 13.6; HRMS (ESI+) calcd for C25H23F3N6O ([M + H]+) 481.1958, found 481.1953.

 E/Z mixture of E2212 (196.0 g (containing residual n-PrOH), E:Z = 61.8:37.4 by UV (271 nm), 1.3:1.0 by 1H NMR) as an orange oil. HPLC conditions to monitor the isomerization conversion and E/Z ratio: XBridge-Shield-RP18 (5 μm, 4.6 mm × 250 mm), 1.0 mL/min, oven temperature = 40 °C, mobile phase A = 900:100:1 v/v/w H2O/MeCN/AcONH4, mobile phase B = 100:900:1 v/v/w H2O/MeCN/AcONH4, gradient (time (min)/B conc (%)) = 0/5 → 5/45 → 35/45 → 50/100 → 55/100 → 55.01/5 → 65/5 → 65.01/stop, RRT of Z form = 0.73.
From this mixture, a small portion was purified by silica gel column chromatography to give the Zisomer in free form. FTIR (cm–1, KBr) 3416, 2952, 1586, 1500, 1487, 1313, 1161, 1114, 1036, 966, 858, 769; 1H NMR (600 MHz, CDCl3) δ 7.90 (d, J = 7.9 Hz, 1H), 7.72 (d, J = 1.2 Hz, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.45 (dd, J = 7.6, 7.4 Hz, 1H), 7.37 (dd, J = 7.7, 7.6 Hz, 1H), 7.30 (d, J = 7.9 Hz, 1H), 7.02 (d, J = 7.9 Hz, 1H), 6.93 (dd, J = 1.2, 1.0 Hz, 1H), 6.73 (d, J = 13.3 Hz, 1H), 6.64 (d, J = 13.3 Hz, 1H), 4.63 (dd, J = 9.3, 5.9 Hz, 1H), 4.34 (br ddd, J = 13.0, 5.6, 4.1 Hz, 1H), 4.28 (ddd, J = 13.0, 9.9, 4.9 Hz, 1H), 3.92 (s, 3H), 2.45 (dddd, J = 13.2, 6.5, 6.5, 2.6 Hz, 1H), 2.29 (d, J= 1.0 Hz, 3H), 2.28 (m, 1H), 2.15 (m, 1H), 1.94 (dddd, J = 12.9, 11.4, 8.3, 2.6 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 159.4, 155.2, 154.4, 150.8, 140.2, 138.3, 136.6, 133.2, 131.9 131.6, 129.9, 128.5 (q, JC–F = 29.8 Hz), 127.2, 126.2 (q, JC–F = 5.6 Hz), 124.4 (q, JC–F = 274.0 Hz), 121.8, 120.1, 118.4, 116.0, 53.6, 47.3, 37.9, 31.0, 21.7, 13.6; HRMS (ESI+) calcd for C25H24F3N6O ([M + H]+) 481.1958, found 481.1960.

///////////E2212, E 2212

DESLORATADINE, デスロラタジン

$
0
0

Desloratadine.svg

Desloratadine

  • Molecular FormulaC19H19ClN2
  • Average mass310.821 Da
100643-71-8 [RN]
5H-Benzo[5,6]cyclohepta[1,2-b]pyridine, 8-chloro-6,11-dihydro-11-(4-piperidinylidene)-
7817
Desloratadine, Descarboethoxyloratadine, Sch-34117, DCL, Denosin, Clarinex RediTabs, Allex, Desalex, Opulis, Clarinex, Neoclarityn, Aerius, MK-4117

Desloratadine (trade name Clarinex and Aerius) is a tricyclic H1-antihistamine that is used to treat allergies. It is an active metaboliteof loratadine.

It was patented in 1984 and came into medical use in 2001.[1]

Medical uses

Desloratadine is used to treat allergic rhinitisnasal congestion and chronic idiopathic urticaria (hives).[2] It is the major metabolite of loratadine and the two drugs are similar in safety and effectiveness.[2] Desloratadine is available in many dosage forms and under many trade names worldwide.[3]

An emerging indication for desloratadine is in the treatment of acne, as an inexpensive adjuvant to isotretinoin and possibly as maintenance therapy or monotherapy.[4][5]

Side effects

The most common side-effects are fatiguedry mouth, and headache.[2]

Interactions

A number of drugs and other substances that are prone to interactions, such as ketoconazoleerythromycin and grapefruit juice, have shown no influence on desloratadine concentrations in the body. Desloratadine is judged to have a low potential for interactions.[6]

Pharmacology

Pharmacodynamics

Desloratadine is a selective H1antihistamine which functions as an inverse agonist at the histamine H1 receptor.[7]

At very high doses, is also an antagonist at various subtypes of the muscarinic acetylcholine receptors. This effect is not relevant for the drug’s action at therapeutic doses.[8]

Pharmacokinetics

Desloratadine is well absorbed from the gut and reaches highest blood plasma concentrations after about three hours. In the bloodstream, 83 to 87% of the substance are bound to plasma proteins.[6]

Desloratadine is metabolized to 3-hydroxydesloratadine in a three-step sequence in normal metabolizers. First, n-glucuronidation of desloratadine by UGT2B10; then, 3-hydroxylation of desloratadine N-glucuronide by CYP2C8; and finally, a non-enzymatic deconjugation of 3-hydroxydesloratadine N-glucuronide.[9] Both desloratadine and 3-hydroxydesloratadine are eliminated via urine and feces with a half-life of 27 hours in normal metabolizers.[6][10]

3-Hydroxydesloratadine, the main metabolite

It exhibits only peripheral activity since it does not readily cross the blood-brain barrier; hence, it does not normally cause drowsiness because it does not readily enter the central nervous system.[11]

Desloratadine does not have a strong effect on a number of tested enzymes in the cytochrome P450 system. It was found to weakly inhibit CYP2B6CYP2D6, and CYP3A4/CYP3A5, and not to inhibit CYP1A2CYP2C8CYP2C9, or CYP2C19. Desloratadine was found to be a potent and relatively selective inhibitor of UGT2B10, a weak to moderate inhibitor of UGT2B17UGT1A10, and UGT2B4, and not to inhibit UGT1A1UGT1A3UGT1A4UGT1A6UGT1A9UGT2B7UGT2B15UGT1A7, and UGT1A8.[9]

Pharmacogenomics

2% of Caucasian people and 18% of people from African descent are desloratadine poor metabolizers. In these people, the drug reaches threefold highest plasma concentrations six to seven hours after intake, and has a half-life of about 89 hours. However, the safety profile for these subjects is not worse than for extensive (normal) metabolizers.[6][10]

Clip

https://www.beilstein-journals.org/bjoc/articles/9/265

The value of substituted 3-picoline precursors is illustrated in the synthesis of clarinex (1.22, Desloratadine, Scheme 5), a dual antagonist of platelet activating factor (PAF) and of histamine used in the treatment of allergies. This compound consists of a highly functional tricyclic core with an unsaturated linkage to a pendant piperidine ring. The picoline derivative 1.23 is first treated with two equivalents of n-butyllithium (n-BuLi) followed by alkylation with benzyl chloride to give the chain elongated adduct [27]. The tert-butylamide 1.24 is then dehydrated with phosphorous oxychloride at elevated temperatures to yield the nitrile derivative 1.25. Introduction of the piperidine ring is achieved by utilisation of the appropriately substituted Grignard reagent 1.26. A Friedel–Crafts type acylation promoted by either triflic acid or polyphosphoric acid (PPA) furnishes the tricyclic structure 1.28 which upon N-demethylation affords clarinex (1.22).

CLIP

Image result for desloratadine

FTIR

Image result for desloratadine

SYN

Alcoholysis of 3-methylpyridine-2-carbonitrile (I) with hot tert-butanol and H2SO4 gives the N-tert-butylcarboxamide (II), which is alkylated with 3-chlorobenzyl chloride (III) and BuLi in THF, yielding N-tert-butyl-3-[2-(3-chlorophenyl)ethyl]pyridine-2-carboxamide (IV). The reaction of (IV) with refluxing POCl3 and then with NaOH affords the corresponding nitrile (V), which is condensed with 1-methylpiperidin-4-ylmagnesium chloride (VI) in THF to give the ketone (VII). Cyclization of (VII) by means of either BF3 in HF or trifluoromethanesulfonic acid yields 8-chloro-11-(1-methylpiperidin-4-ylidene)-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridine (VIII), which is reacted with cyanogen bromide in benzene to give the N-cyano compound (IX). Finally, this compound is treated with HCl in refluxing acetic acid/water. Alternatively, 8-chloro-11-(1-methylpiperidin-4-ylidene)-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridine (VIII) is treated with ethyl chloroformate in hot toluene, affording the carbamate (X) (2), which is finally decarboxylated with KOH or NaOH in refluxing ethanol/water.

SYN

Condensation of ethyl nicotinate (XI) with 3-chlorophenylacetonitrile (XII) by means of sodium ethoxide in ethanol gives 2-(3-chlorophenyl)-3-oxo-3-(3-pyridyl)propionitrile (XIII), which by refluxing with concentrated HBr yields 2-(3-chlorophenyl)-1-(3-pyridyl)ethanone (XIV). The reduction of (XIV) with hydrazine hydrate and NaOH in diethylene glycol at 235-40 C affords 3-(2-phenylethyl) pyridine (XV), which is oxidized with H2O2 in hot acetic acid to provide the corresponding N-oxide (XVI). Reaction of (XVI) with NaCN and dimethyl sulfate in water affords the previously described 3-(2-phenylethyl)pyridine-2-carbonitrile (V), which can be worked up as previously described or cyclized with polyphosphoric acid (PPA) at 180 C to give 8-chloro-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-one (XVII). The condensation of (XVII) with 1-methylpiperidin-4-ylmagnesium chloride (VI) in THF yields the corresponding carbinol (XVIII), which is dehydrated with PPA at 170 C to afford the previously reported 8-chloro-11-(1-methylpiperidin-4-ylidene)-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridine (VIII).

SYN

Condensation of ethyl nicotinate (XI) with 3-chlorophenylacetonitrile (XII) by means of sodium ethoxide in ethanol gives 2-(3-chlorophenyl)-3-oxo-3-(3-pyridyl)propionitrile (XIII), which by refluxing with concentrated HBr yields 2-(3-chlorophenyl)-1-(3-pyridyl)ethanone (XIV). The reduction of (XIV) with hydrazine hydrate and NaOH in diethylene glycol at 235-40 C affords 3-(2-phenylethyl) pyridine (XV), which is oxidized with H2O2 in hot acetic acid to provide the corresponding N-oxide (XVI). Reaction of (XVI) with NaCN and dimethyl sulfate in water affords the previously described 3-(2-phenylethyl)pyridine-2-carbonitrile (V), which can be worked up as previously described or cyclized with polyphosphoric acid (PPA) at 180 C to give 8-chloro-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-one (XVII). The condensation of (XVII) with 1-methylpiperidin-4-ylmagnesium chloride (VI) in THF yields the corresponding carbinol (XVIII), which is dehydrated with PPA at 170 C to afford the previously reported 8-chloro-11-(1-methylpiperidin-4-ylidene)-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridine (VIII).

Syn

2) By reaction of 8-chloro-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-one (III) with the Grignard reagent (IV) to give the tertiary carbinol (V), which is dehydrated with 85% H2SO4 affording 8-chloro-11-piperidinylidene derivative (VI). Finally, cornpound (VI) is treated with ethyl chloroformate (II) in toluene.

SYN

1) By carboxylation of 8-chloro-6,11-dihydro-11-(4-piperidylidene)-5H-benzo[5,6]cyctohepta[1,2-b]pyridine (I) with ethyl chloroformate (II) in refluxing benzene.

SYN

The condensation of S-methylisothiourea (I) with trans-4-(aminomethyl)cyclohexanecarboxylic acid (II) by means of NaOH in water gives trans-4-(guanidinomethyl)cyclohexanecarboxylic acid (III) (I), which is esterified with benzyl salicylate (IV) by means of dicyclohexylcarbodiimide (DCC) or SOCl2 yielding 2-benzyloxycarbonylphenyl trans-4-(guanidinomethyl)cyclohexanecarboxylate (V). Finally, this compound is treated with cyclodextrin in aqueous solution to afford the corresponding complex.

SPECTROSCOPY

Figure CN103755682AD00061

[0052] Table 1, desloratadine sample IH-NMR data of the DMS0_d6

Figure CN103755682AD00062

[0055] The desloratadine 1H spectra of the samples were assigned:
[0056] (I) 1H spectra show that there are 10 groups of hydrogen from low field to high field integral hydrogen ratio was 1: 1: 1: 1: 1: 1: 2: 4:
2: 4, and desloratadine structure match.
[0057] (2) δ 8.334 处 hydrogen as a set of double doublet, number of protons is I, attributed to two hydrogen;
[0058] (3) δ 7.560 处 hydrogen as a set of double doublet, number of protons is I, attributed to four hydrogen;
[0059] (4) δ 7.282 处 doublet hydrogen as a group, the number of protons is I, 12 attributed to hydrogen.
[0060] (5) δ 7.198 处 hydrogen as a set of double doublet, number of protons is I, 14 attributed to hydrogen;
[0061] (6) δ 7.174 处 hydrogen as a set of double doublet, number of protons is I, attributed to three hydrogen;
[0062] (7) δ 7.064 处 doublet hydrogen as a group, the number of protons is I, 15 attributed to hydrogen;
[0063] (8) δ 3.314 处 hydrogen as a group multiplet, 2 protons attributable to 10 hydrogen;
[0064] (9) δ 2.831,2.554 hydrogen groups at multiplet, protons of 4, 18, 20, the home position is hydrogen;
[0065] (10) δ 2.819 处 hydrogen as a group multiplet, 2 protons attributable to 11 hydrogen;
[0066] (11) δ 2.108 处 hydrogen as a single peak, the number of protons is I, home to 19 active hydrogen;
[0067] (12) δ 2.205, 2.002 处 two hydrogen multiplet, protons of 4, 17, 21 bits attributed to hydrogen; [0068] From the foregoing, 1H-NMR spectrum data and the resulting product in this embodiment is of he will be loratadine same structure as the target product.

 http://www.google.com/patents/CN103755682A?cl=en

References

  1. ^ Fischer, Jnos; Ganellin, C. Robin (2006). Analogue-based Drug Discovery. John Wiley & Sons. p. 549. ISBN 9783527607495.
  2. Jump up to:a b c See S (2003). “Desloratadine for allergic rhinitis”Am Fam Physician68 (10): 2015–6. PMID 14655812.
  3. ^ Drugs.com Desloratadine entry at drugs.com international Page accessed May 4, 2015
  4. ^ Lee HE, Chang IK, Lee Y, Kim CD, Seo YJ, Lee JH, Im M (2014). “Effect of antihistamine as an adjuvant treatment of isotretinoin in acne: a randomized, controlled comparative study”. J Eur Acad Dermatol Venereol28 (12): 1654–60. doi:10.1111/jdv.12403PMID 25081735.
  5. ^ Layton AM (2016). “Top Ten List of Clinical Pearls in the Treatment of Acne Vulgaris”. Dermatol Clin34 (2): 147–57. doi:10.1016/j.det.2015.11.008PMID 27015774.
  6. Jump up to:a b c d “Aerius: EPAR – Product Information” (PDF)European Medicines Agency. 2017-06-07.
  7. ^ Canonica GW, Blaiss M (2011). “Antihistaminic, anti-inflammatory, and antiallergic properties of the nonsedating second-generation antihistamine desloratadine: a review of the evidence”World Allergy Organ J4 (2): 47–53. doi:10.1097/WOX.0b013e3182093e19PMC 3500039PMID 23268457.
Desloratadine
Desloratadine.svg
Desloratadine 3D ball-and-stick.png
Clinical data
Trade names Clarinex (US), Aerius, Dasselta, Deslordis (EU), others
AHFS/Drugs.com Monograph
MedlinePlus a602002
License data
Pregnancy
category
  • AU: B1
  • US: C (Risk not ruled out)
Routes of
administration
Oral (tablets, solution)
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability Rapidly absorbed
Protein binding 83 to 87%
Metabolism UGT2B10CYP2C8
Metabolites 3-Hydroxydesloratadine
Onset of action within 1 hour
Elimination half-life 27 hours
Duration of action up to 24 hours
Excretion 40% as conjugated metabolites into urine
Similar amount into the feces
Identifiers
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
ECHA InfoCard 100.166.554 Edit this at Wikidata
Chemical and physical data
Formula C19H19ClN2
Molar mass 310.82 g/mol g·mol−1
3D model (JSmol)

//////////Desloratadine, Descarboethoxyloratadine, Sch-34117, DCL, Denosin, Clarinex RediTabs, Allex, Desalex, Opulis, Clarinex, Neoclarityn, Aerius, MK-4117

Acefylline

$
0
0

Acefylline

Skeletal formula of acefylline

Acefylline

  • Molecular FormulaC9H10N4O4
  • Average mass238.200 Da
(1,3-Dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)acetic acid
1,2,3,6-Tetrahydro-1,3-dimethyl-2,6-dioxo-7H-purine-7-acetic Acid
1,3-Dimethylxanthine-7-acetic acid
211-490-2 [EINECS]
652-37-9 [RN]
7-(Carboxymethyl)theophylline
7H-Purine-7-acetic acid, 1,2,3,6-tetrahydro-1,3-dimethyl-2,6-dioxo-
CAS Registry Number: 652-37-9
CAS Name: 1,2,3,6-Tetrahydro-1,3-dimethyl-2,6-dioxopurine-7-acetic acid
Additional Names: carboxymethyltheophylline; 7-theophyllineacetic acid
Molecular Formula: C9H10N4O4
Molecular Weight: 238.20
Percent Composition: C 45.38%, H 4.23%, N 23.52%, O 26.87%
Literature References: Prepn: DE 352980 (1922 to E. Merck); Frdl. 14, 1320; S. M. Ride et al., Pharmazie 32, 672 (1977). Prepn of salts: J. Baisse, Bull. Soc. Chim. Fr. 1949, 769; M. Milletti, F. Virgili, Chimica 6, 394 (1951), C.A. 46, 8615h (1952). GC determn in urine: J. Zuidema, H. Hilbers, J. Chromatogr. 182, 445 (1980). HPLC determn in serum and pharmacokinetics: S. Sved et al.,Biopharm. Drug Dispos. 2, 177 (1981).
Properties: Crystals from water, mp 271°.
Melting point: mp 271°
Derivative Type: Sodium salt
CAS Registry Number: 837-27-4
Molecular Formula: C9H9N4NaO4
Molecular Weight: 260.18
Percent Composition: C 41.55%, H 3.49%, N 21.53%, Na 8.84%, O 24.60%
Properties: Silky needles, mp >300°.
Melting point: mp >300°
Derivative Type: Compd with piperazine
Additional Names: Acefylline piperazine; acepifylline
Trademarks: Dynaphylline (Welcker-Lyster); Etaphylline (Delalande); Etafillina (Delalande)
Properties: Undefined mixture of the 1:1 and 2:1 salts; contains 75-78% theophylline acetic acid and 22-25% anhydrous piperazine.
Therap-Cat: Bronchodilator.
Keywords: Bronchodilator; Xanthine Derivatives.

Acefylline (INN),[1] also known as acetyloxytheophylline, is a stimulant drug of the xanthine chemical class. It acts as an adenosine receptor antagonist. It is combined with diphenhydramine in the pharmaceutical preparation etanautine to help offset diphenhydramine induced drowsiness.[2]

Synthesis

DE 352980 (1922 to E. Merck); Frdl. 14, 1320; S. M. Ride et al., Pharmazie 32, 672 (1977).

File:Acefylline synthesis.svg

Acefylline

  • Use:cardiotonic, diuretic, antispasmodic, bronchodilator
  • Chemical name:1,2,3,6-tetrahydro-1,3-dimethyl-2,6-dioxo-7H-purine-7-acetic acid
  • Formula:C9H10N4O4
  • MW:238.20 g/mol
  • CAS-RN:652-37-9
  • EINECS:211-490-2
  • LD50:1180 mg/kg (M, i.p.); 2733 mg/kg (M, p.o.)
Acepifylline
  • Use:
  • Chemical name:1,2,3,6-tetrahydro-1,3-dimethyl-2,6-dioxo-7H-purine-7-acetic acid compd. with piperazine
  • Formula:C9H10N4O4 • xC4H10N2
  • MW:unspecified
  • CAS-RN:18833-13-1
  • EINECS:242-614-3
Acefylline heptaminol
  • Use:
  • Chemical name:1,2,3,6-tetrahydro-1,3-dimethyl-2,6-dioxo-7H-purine-7-acetic acid compd. with 6-amino-2-methyl-2-heptaminol (1:1)
  • Formula:C9H10N4O3 • C8H19NO
  • MW:367.45 g/mol
  • CAS-RN:59989-20-7
  • EINECS:262-012-4
References
  1. ^ “International Nonproprietary Names for Pharmaceutical Substances (INN). Recommended International Nonproprietary Names (Rec. INN): List 21” (PDF). World Health Organization. Retrieved 29 December 2016.
  2. ^ Zuidema, Jan. (1978). “Biofarmaceutische en farmacokinetische aspecten van theofylline en acefylline”. Thesis (doctoral)–Universiteit van Amsterdam. References
Baisse, J.: Bull. Soc. Chim. Fr. (BSCFAS) 1949, 769.
DE 352 980 (E. Merck; 1922).
Acefylline
Skeletal formula of acefylline
Ball-and-stick model of the acefylline molecule
Clinical data
ATC code
Identifiers
CAS Number
PubChemCID
ChemSpider
UNII
ChEMBL
ECHA InfoCard 100.010.447 Edit this at Wikidata
Chemical and physical data
Formula C9H10N4O4
Molar mass 238.20 g/mol g·mol−1
3D model (JSmol)

////////Acefylline


BMS 986236

$
0
0

JXMPVWXEDGELMJ-UHFFFAOYSA-N.png

BMS-986236

CAS  2058035-15-5

MW C22 H25 N9 O

MF 431.49

1-(5-(4-(3-Hydroxy-3-methylbutyl)-1H-1,2,3-triazol-1-yl)-4-(isopropylamino)pyridin-2-yl)-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile

1H-Pyrazolo[3,4-b]pyridine-5-carbonitrile, 1-[5-[4-(3-hydroxy-3-methylbutyl)-1H-1,2,3-triazol-1-yl]-4-[(1-methylethyl)amino]-2-pyridinyl]-

1-[5-[4-(3-hydroxy-3-methylbutyl)triazol-1-yl]-4-(propan-2-ylamino)pyridin-2-yl]pyrazolo[3,4-b]pyridine-5-carbonitrile

The present invention generally relates to heteroaryl substituted aminopyridine compounds useful as kinase inhibitors, including the modulation of IRAK-4. Provided herein are heteroaryl substituted aminopyridine compounds, compositions comprising such compounds, and methods of their use. The invention further pertains to pharmaceutical compositions containing at least one compound according to the invention that are useful for the treatment of conditions related to kinase modulation and methods of inhibiting the activity of kinases, including IRAK-4 in a mammal.
      Toll/IL-1 receptor family members are important regulators of inflammation and host resistance. The Toll like receptor (TLR) family recognizes molecular patterns derived from infectious organisms including bacteria, fungi, parasites, and viruses (reviewed in Kawai, T. et al., Nature Immunol., 11:373-384 (2010)). Ligand binding to the receptor induces dimerization and recruitment of adaptor molecules to a conserved cytoplasmic motif in the receptor termed the Toll/IL-1 receptor (TIR) domain. With the exception of TLR3, all TLRs recruit the adaptor molecule MyD88. The IL-1 receptor family also contains a cytoplasmic TIR motif and recruits MyD88 upon ligand binding (reviewed in Sims, J. E. et al., Nature Rev. Immunol., 10:89-102 (2010)).
      Members of the IRAK family of serine/threonine kinases are recruited to the receptor via interactions with MyD88. The family consists of four members. Several lines of evidence indicate that IRAK4 plays a critical and non-redundant role in initiating signaling via MyD88 dependent TLRs and IL-1R family members. Structural data confirms that IRAK4 directly interacts with MyD88 and subsequently recruits either IRAK1 or IRAK2 to the receptor complex to facilitate downstream signaling (Lin, S. et al., Nature, 465:885-890 (2010)). IRAK4 directly phosphorylates IRAK1 to facilitate downstream signaling to the E3 ubiquitin ligase TRAF6, resulting in activation of the serine/threonine kinase TAK1 with subsequent activation of the NFκB pathway and MAPK cascade (Flannery, S. et al., Biochem. Pharmacol., 80:1981-1991 (2010)). A subset of human patients was identified who lack IRAK4 expression (Picard, C. et al.,Science, 299:2076-2079 (2003)). Cells from these patients fail to respond to all TLR agonists with the exception of TLR3 as well as to members of the IL-1 family including IL-113 and IL-18 (Ku, C. et al., J. Exp. Med., 204:2407-2422 (2007)). Deletion of IRAK4 in mice results in a severe block in IL-1, IL-18 and all TLR dependent responses with the exception of TLR3 (Suzuki, N. et al., Nature, 416:750-754 (2002)). In contrast, deletion of either IRAK1 (Thomas, J. A. et al., J. Immunol., 163:978-984 (1999); Swantek, J. L. et al., J. Immunol., 164:4301-4306 (2000) or IRAK2 (Wan, Y. et al., J. Biol. Chem., 284:10367-10375 (2009)) results in partial loss of signaling. Furthermore, IRAK4 is the only member of the IRAK family whose kinase activity has been shown to be required for initiation of signaling. Replacement of wild type IRAK4 in the mouse genome with a kinase inactive mutant (KDKI) impairs signaling via all MyD88 dependent receptors including IL-1, IL-18 and all TLRs with the exception of TLR3 (Koziczak-Holbro, M. et al., J. Biol. Chem., 282:13552-13560 (2007); Kawagoe, T. et al., J. Exp. Med., 204:1013-1024 (2007); and Fraczek, J. et al., J. Biol. Chem., 283:31697-31705 (2008)).
      As compared to wild type animals, IRAK4 KDKI mice show greatly reduced disease severity in mouse models of multiple sclerosis (Staschke, K. A. et al., J. Immunol., 183:568-577 (2009)), rheumatoid arthritis (Koziczak-Holbro, M. et al., Arthritis Rheum., 60:1661-1671 (2009)), atherosclerosis (Kim, T. W. et al., J. Immunol., 186:2871-2880 (2011) and Rekhter, M. et al., Biochem. Biophys. Res. Comm., 367:642-648 (2008)), and myocardial infarction (Maekawa, Y. et al., Circulation, 120:1401-1414 (2009)). As described, IRAK4 inhibitors will block all MyD88 dependent signaling. MyD88 dependent TLRs have been shown to contribute to the pathogenesis of multiple sclerosis, rheumatoid arthritis, cardiovascular disease, metabolic syndrome, sepsis, systemic lupus erythematosus, inflammatory bowel diseases including Crohn’s disease and ulcerative colitis, autoimmune uveitis, asthma, allergy, type I diabetes, and allograft rejection (Keogh, B. et al., Trends Pharmacol. Sci., 32:435-442 (2011); Mann, D. L., Circ. Res., 108:1133-1145 (2011); Horton, C. G. et al., Mediators Inflamm., Article ID 498980 (2010), doi:10.1155/2010/498980; Goldstein, D. R. et al., J Heart Lung Transplant., 24:1721-1729 (2005); and Cario, E., Inflamm. Bowel Dis., 16:1583-1597 (2010)). Oncogenically active MyD88 mutations in diffuse large B cell lymphomas have been identified that are sensitive to IRAK4 inhibition (Ngo, V. N. et al., Nature, 470:115-121 (2011)). Whole genome sequencing also identified mutations in MyD88 associated with chronic lymphatic leukemia suggesting that IRAK4 inhibitors may also have utility in treating leukemia (Puente, X. S. et al., Nature, 475:101-105 (2011)).
      In addition to blocking TLR signaling, IRAK4 inhibitors will also block signaling by members of the IL-1 family. Neutralization of IL-1 has been shown to be efficacious in multiple diseases including gout; gouty arthritis; type 2 diabetes; auto-inflammatory diseases including Cryopyrin-Associated Periodic Syndromes (CAPS), TNF Receptor Associated Periodic Syndrome (TRAPS), Familial Mediterranean Fever (FMF), adult onset stills; systemic onset juvenile idiopathic arthritis; stroke; Graft-versus-Host Disease (GVHD); smoldering multiple myeloma; recurrent pericarditis; osteoarthritis; emphysema (Dinarello, C. A., Eur. J. Immunol., 41:1203-1217 (2011) and Couillin, I. et al., J Immunol., 183:8195-8202 (2009)). In a mouse model of Alzheimer’s disease, blockade of IL-1 receptor improved cognitive defects, attenuated tau pathology and reduced oligomeric forms of amyloid-β (Kitazawa, M. et al., J. Immunol., 187:6539-6549 (2011)). IL-1 has also been shown to be a critical link to adaptive immunity, driving differentiation of the TH17 effector T cell subset (Chung, Y. et al., Immunity, 30:576-587 (2009)). Therefore, IRAK4 inhibitors are predicted to have efficacy in TH17 associated diseases including multiple sclerosis, psoriasis, inflammatory bowel diseases, autoimmune uveitis, and rheumatoid arthritis (Wilke, C. M. et al., Trends Immunol., 32:603-661 (2011)).
      WO2013/106612, WO2013/106614, WO2013/106641, WO2014/074657, and WO2014/074675 disclose substituted pyridyl compounds useful as kinase inhibitors, including the modulation of IRAK4.
      In view of the conditions that may benefit by treatment involving modulation of protein kinases, it is immediately apparent that new compounds capable of modulating protein kinases such as IRAK-4 and methods of using these compounds could provide substantial therapeutic benefits to a wide variety of patients.
      The present invention relates to a new class of heteroaryl substituted aminopyridine compounds found to be effective inhibitors of protein kinases including IRAK-4. These compounds are provided to be useful as pharmaceuticals with desirable stability, bioavailability, therapeutic index, and toxicity values that are important to their drugability.

PATENT

US2018186799

https://patentscope.wipo.int/search/en/detail.jsf?docId=US222843237&tab=PCTDESCRIPTION&maxRec=1000

 (MOL) (CDX)

PATENT

Gardner, D. S.Santella, J. B.Paidi, V. R.Wu, H.Duncia, J. V.Nair, S. K.Hynes, J. (BMS, USA). Heteroaryl Substituted Aminopyridine Compounds. PCT Int. Appl. WO/2016/210034 A12016.

https://patents.google.com/patent/WO2016210034A1/en

Clip

https://pubs.acs.org/doi/10.1021/acs.oprd.9b00023

Development of a Scalable Synthesis for the Potent Kinase Inhibitor BMS-986236; 1-(5-(4-(3-Hydroxy-3-methylbutyl)-1H-1,2,3-triazol-1-yl)-4-(isopropylamino)pyridin-2-yl)-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile

 Department of Discovery SynthesisBiocon Bristol-Myers Squibb Research CenterBiocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore-560 099, India
 Discovery ChemistryBristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-4000, United States
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.9b00023
Abstract Image

A scalable route to 1-(5-(4-(3-hydroxy-3-methylbutyl)-1H-1,2,3-triazol-1-yl)-4-(isopropylamino)pyridin-2-yl)-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (1BMS-986236) was developed by incorporating an alternate azide intermediate following safety-driven processes. The newly developed process involved mitigating safety hazards and eliminating the column chromatography purification. The issue of trace metal contamination in the final API observed in the first-generation synthesis has been overcome.

1 (92.5 g, 73% yield, 99.5% purity by HPLC) as a cream-colored solid.

1H NMR (400 MHz, DMSO-d6) δ = 9.21–8.86 (m, 2H), 8.66 (s, 1H), 8.45–8.24 (m, 2H), 7.49 (s, 1H), 6.57 (d, J = 7.5 Hz, 1H), 4.33 (s, 1H), 3.83 (d, J = 7.0 Hz, 1H), 2.91–2.72 (m, 2H), 1.97–1.68 (m, 2H), 1.24 (d, J = 6.5 Hz, 12H).

13C NMR (100 MHz, DMSO) δ = 151.7, 150.8, 149.8, 147.9, 147.7, 143.7, 136.8, 136.3, 122.9, 118.9, 117.6, 116.0, 102.8, 99.4, 68.4, 43.6, 42.7, 29.2, 21.7, 20.2.

HRMS [M + H]+ calcd for C22H25N9O 432.2255, found 432.2259.

//////// BMS-986236, BMS 986236

CC(C)(O)CCc1cn(nn1)c2cnc(cc2NC(C)C)n4ncc3cc(cnc34)C#N

Tegaserod, テガセロド

$
0
0

Tegaserod structure.svg

ChemSpider 2D Image | Tegaserod | C16H23N5O

Tegaserod

  • Molecular FormulaC16H23N5O
  • Average mass301.387 Da
  • テガセロド
145158-71-0 cas
HTF 919 / HTF-919 / SDZ HTF 919 / SDZ-HTF-919
N’-[(E)-[(5-methoxy-1H-indol-3-yl)methylidene]amino]-N-pentylguanidine
(2E)-2-[(5-Methoxy-1H-indol-3-yl)methylene]-N-pentylhydrazinecarboximidamide [ACD/IUPAC Name]
(2E)-2-[(5-methoxy-1H-indol-3-yl)methylidene]-N’-pentylhydrazinecarboximidamide
(2E)-2-[(5-methoxy-1H-indol-3-yl)methylidene]-N-pentylhydrazinecarboximidamide
145158-71-0 [RN]
7606
Hydrazinecarboximidamide, 2-[(5-methoxy-1H-indol-3-yl)methylene]-N-pentyl-, (2E)

Sundaram Venkataraman, Srinivasulu Gudipati, Brahmeshwararao Mandava Venkata Naga, Goverdhan Banda, Radhakrishna Singamsetty, “Process for preparing form I of tegaserod maleate.” U.S. Patent US20050272802, issued December 08, 2005.US20050272802

2D chemical structure of 189188-57-6

Tegaserod maleate [USAN]
189188-57-6

Tegaserod
CAS Registry Number: 145158-71-0
CAS Name: 2-[(5-Methoxy-1H-indol-3-yl)methylene]-N-pentylhydrazinecarboximidamide
Molecular Formula: C16H23N5O
Molecular Weight: 301.39
Percent Composition: C 63.76%, H 7.69%, N 23.24%, O 5.31%
Literature References: Selective serotonin 5HT4-receptor partial agonist. Prepn: R. K. A. Giger, H. Mattes, EP 505322eidem, US5510353 (1992, 1996 both to Sandoz); K.-H. Buchheit et al., J. Med. Chem. 38, 2331 (1995). Clinical pharmacology: S. Appel et al., Clin. Pharmacol. Ther. 62, 546 (1997); and pharmacokinetics: idem et al., J. Clin. Pharmacol. 37, 229 (1997). Clinical trial in irritable bowel syndrome: S. A. Müller-Lissner et al., Aliment. Pharmacol. Ther. 15, 1655 (2001); in female patients: J. Novick et al.,ibid. 16, 1877 (2002). Review of clinical efficacy: B. W. Jones et al., J. Clin. Pharm. Ther. 27, 343-352 (2002); of mechanism of action, efficacy and safety: M. Corsetti, J. Tack, Expert Opin. Pharmacother. 3, 1211-1218 (2002).
Properties: mp 155°.
Melting point: mp 155°
Derivative Type: Maleate
CAS Registry Number: 189188-57-6
Manufacturers’ Codes: SDZ-HTF-919
Trademarks: Zelmac (Novartis); Zelnorm (Novartis)
Molecular Formula: C16H23N5O.C4H4O4
Molecular Weight: 417.46
Percent Composition: C 57.54%, H 6.52%, N 16.78%, O 19.16%
Therap-Cat: Gastroprokinetic; in treatment of irritable bowel syndrome.
Keywords: Gastroprokinetic; Serotonin Receptor Agonist.

Tegaserod is a 5-HT4 agonist manufactured by Novartis and sold under the names Zelnorm and Zelmac for the management of irritable bowel syndrome and constipation.[1] Approved by the FDA in 2002, it was subsequently removed from the market in 2007 due to FDA concerns about possible adverse cardiovascular effects. Before then, it was the only drug approved by the United States Food and Drug Administration to help relieve the abdominal discomfort, bloating, and constipation associated with irritable bowel syndrome. Its use was also approved to treat chronic idiopathic constipation.[2]

In 2000, originator Novartis established an alliance with Bristol-Myers Squibb for the codevelopment and copromotion of tegaserod maleate, which is now available in more than 55 countries worldwide for the treatment of IBS with constipation. In 2015, Zelnorm was acquired by Sloan Pharma from Novartis.

Novartis’ brand name Zelnorm (tegaserod) had originally received approval from the US FDA in 2002 for the treatment of irritable bowel syndrome with constipation (IBS-C) [58]. It was, however, voluntarily withdrawn from widespread use in the US market in 2007 after concerns arose over the possibility that tegaserod could potentially cause dangerous cardiovascular events in patients [5,8]. Since then, closer evaluations of the original data suggesting such cardiovascular risk have resulted in the limited reintroduction or ‘re-approval’ of tegaserod for treatment of IBS-C specifically in female patients less than 65 years of age and whom are considered to be at a lower risk of a cardiovascular event than the broader population . Zelnorm (tegaserod) by Sloan Pharma subsequently gained re-approval in April of 2019 [5]. Nevertheless, tegaserod remains un-approved in certain regions [7].

Despite the relative complications involved in its history of regulatory approval, ever since its first introduction in 2002 tegaserod remains the only therapy for IBS-C that possesses the unique mechanism of action of acting on serotonin-4 (5-HT(4)) receptors in smooth muscle cells and in the gastrointestinal wall to facilitate actions like esophageal relaxation, peristaltic gut movement, and natural secretions in the gut, among others

Mechanism of action

The drug functions as a motility stimulant, achieving its desired therapeutic effects through activation of the 5-HT4 receptors of the enteric nervous system in the gastrointestinal tract. It also stimulates gastrointestinal motility and the peristaltic reflex, and allegedly reduces abdominal pain.[3] Additionally, tegaserod is a 5-HT2B receptor antagonist.[4]

Withdrawal from market

On 30 March 2007, the United States Food and Drug Administration requested that Novartis withdraw Zelnorm from shelves.[5] The FDA alleges a relationship between prescriptions of the drug and increased risks of heart attack or stroke. An analysis of data collected on over 18,000 patients demonstrated adverse cardiovascular events in 13 of 11,614 patients treated with Zelnorm (a rate of 0.11%) as compared with 1 of 7,031 patients treated with placebo (a rate of 0.01%). Novartis alleges all of the affected patients had preexisting cardiovascular disease or risk factors for such, and further alleges that no causal relationship between tegaserod use and cardiovascular events has been demonstrated.[6] On the same day as the FDA announcement, Novartis Pharmaceuticals Canada announced that it was suspending marketing and sales of the drug in Canada in response to a request from Health Canada.[7] In a large cohort study based on a US health insurance database, no increase in the risk of cardiovascular events were found under tegaserod treatment.[8] Currently, tegaserod may only be used in emergency situations only with prior authorization from the FDA.[9]

Paper

The serotonin 5-HT4 receptor. 2. Structure-activity studies of the indole carbazimidamide class of agonists
J Med Chem 1995, 38(13): 2331

https://pubs.acs.org/doi/abs/10.1021/jm00013a010

PATENT

US 5510353

WO 2005105740

WO 2007119109

WO 2007126889

CN 103467358

WO 2006116953

Syn

PATENT

https://patents.google.com/patent/US20090306170A1/en

Image result for tegaserod synthesis

  • In a preferred embodiment of the first aspect of the present invention, the process of preparing tegaserod or a salt thereof comprises the steps of:
    • (a) coupling S-methyl-isothiosemicarbazide or a salt thereof and 5-methoxy-indole-3-carboxaldehyde to form 1-((5-methoxy-1H-indol-3-yl)methylene)-S-methyl-isothiosemicarbazide:
  • Figure US20090306170A1-20091210-C00002
  • and
    • (b) reacting the 1-((5-methoxy-1H-indol-3-yl)methylene)-S-methyl-isothiosemicarbazide with n-pentyl amine to form tegaserod:
  • Figure US20090306170A1-20091210-C00003
  • [0013]
    The skilled person will appreciate that:
      • S-methyl-isothiosemicarbazide and salts thereof exist in two tautomeric forms:
  • Figure US20090306170A1-20091210-C00004
      • 1-((5-methoxy-1H-indol-3-yl)methylene)-S-methyl-isothiosemicarbazide exists in four tautomeric forms:
  • Figure US20090306170A1-20091210-C00005
      • tegaserod exists in four tautomeric forms:
  • Figure US20090306170A1-20091210-C00006
  • [0017]
    It is to be understood that where tautomeric forms occur, the present invention embraces all tautomeric forms and their mixtures, i.e. although S-methyl-isothio-semicarbazide and 1-((5-methoxy-1H-indol-3-yl)methylene)-S-methyl-isothiosemi-carbazide are mostly defined for convenience by reference to one isothiosemicarbazide form only, and although tegaserod is mostly defined for convenience by reference to one guanidino form only, the invention is not to be understood as being in any way limited by the particular nomenclature or graphical representation employed.
  • [0018]
    When an S-methyl-isothiosemicarbazide salt is used in the process of the present invention, this may be an acid addition salt with acids, including but not limited to inorganic acids such as hydrohalogenic acids (for example, hydrofluoric, hydrochloric, hydrobromic or hydroiodic acid) or other inorganic acids (for example, nitric, perchloric, sulfuric or phosphoric acid), or organic acids such as organic carboxylic acids (for example, propionic, butyric, glycolic, lactic, mandelic, citric, acetic, benzoic, salicylic, succinic, malic or hydroxysuccinic, tartaric, fumaric, maleic, hydroxymaleic, mucic or galactaric, gluconic, pantothenic or pamoic acid), organic sulfonic acids (for example, methanesulfonic, trifluoromethanesulfonic, ethanesulfonic, 2-hydroxyethanesulfonic, benzenesulfonic, p-toluenesulfonic, naphthalene-2-sulfonic or camphorsulfonic acid) or amino acids (for example, ornithinic, glutamic or aspartic acid). Preferably the S-methyl-isothiosemicarbazide salt is a hydrohalide (such as the hydrofluoride, hydrochloride, hydrobromide, or hydroiodide) or a sulfonate (such as the methanesulfonate, benzenesulfonate, or p-toluenesulfonate). Preferably the S-methyl-isothiosemicarbazide salt is S-methyl-isothiosemicarbazide hydroiodide.
    • The following synthetic scheme demonstrates a preferred process of the present invention.
    • Figure US20090306170A1-20091210-C00007
    • [0032]
      The invention is now demonstrated by the following non-limiting illustrative example.

EXAMPLE Step 1: Schiff’s Base Formation of 5-methoxy-indole-3-carboxaldehyde and S-methyl-isothiosemi-carbazide hydroiodide

    • [0033]
      5-Methoxy-indole-3-carboxaldehyde (1.5 g, 1 eq) and S-methyl-isothiosemicarbazide hydroiodide (3.99 g, 2 eq) in methanol (15 ml, 10 vol) were stirred in the presence of triethylamine (3 ml, 2 vol) at 25-30° C. for 2 hours. After completion of the reaction, the methanol was removed by distillation under reduced pressure at 45-50° C. and ethyl acetate (10.5 ml, 7 vol) was added to the residue to precipitate out the product. The product, 1-((5-methoxy-1H-indol-3-yl)methylene)-S-methyl-isothiosemi-carbazide, was separated by filtration, washed with ethyl acetate (3 ml, 2 vol) and dried under vacuum at 45-50° C. The yield was almost quantitative (˜100%).

Step 2: Conversion of 1-((5-methoxy-1H-indol-3-yl)methylene)-S-methyl-isothiosemicarbazide to 1-((5-methoxy-1H-indol-3-yl)methyleneamino)-3-pentyl-guanidine (Tegaserod)

    • [0034]
      A solution of 1-((5-methoxy-1H-indol-3-yl)methylene)-S-methyl-isothiosemicarbazide (8.0 g, 1 eq) and n-pentyl amine (2.65 g, 1 eq) was refluxed in methanol (8 ml, 1 vol) at 66° C. for 4 hours. After completion of the reaction, the methanol was removed by distillation under reduced pressure at 45-50° C. to obtain tegaserod free base as a yellowish brown solid. Yield=97%. HPLC purity=95%.

Step 3: Conversion of 1-((5-methoxy-1H-indol-3-yl)methyleneamino)-3-pentyl-guanidine (Tegaserod) to Tegaserod Maleate

  • [0035]
    1-((5-Methoxy-1H-indol-3-yl)methyleneamino)-3-pentyl-guanidine (55 g, 1 eq) was taken in methanol (357.5 ml, 6.5 vol) and stirred. To this reaction mixture was added at room temperature a solution of maleic acid (74.15 g, 3.5 eq) in water (137.5 ml, 2.5 vol) and the reaction mixture stirred for one hour at room temperature. The solid obtained was then filtered through a Buchner funnel and dried at 700 mmHg and 500° C. Yield=36.8 g, 48.42%. HPLC purity=99.45%.

Polymorphs

WO 2007084697

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2007084697

EXAMPLES

PXRD:

EV 320 251 655 US Powder X-ray diffraction (“PXRD”) analysis using a SCINTAG powder X-ray diffϊactometer model X’TRA equipped with a solid-state detector. Copper radiation of λ=1.5418 A was used. The sample was introduced using a round standard aluminum sample holder with round zero background quartz plate in the bottom.
Thermal Gravimetric Analysis TTGA):
TGA/SDTA 85 r, Mettler Toledo , Sample weight 7-15 mg.
Heating rate: 100C/ min., in N2 stream: flow rate: 50 ml/min

Example 1 : Preparation of Tegaserod maleate Form B
To a mixture of 90 g MICHO and 63 g NaOH [47 %] was added a solution of 212 g AGPΗI dissolved in 566 mL of water at room temperature. The resultant reaction mixture was heated to 400C. After 3 hours, 522 mL of ethyl acetate was added and the reaction mixture was stirred for an additional hour. The organic phase was washed with water (3 x 450 mL), and vacuum filtered. After addition of 211 mL ethyl acetate and 870 mL of n-propanol, the mixture was heated to 600C and a solution of maleic acid (86.5 g in 180 mL water), at the same temperature, was added to the reaction mixture and stirred at the same temperature. After 2 hours the reaction mixture was cooled to about 100C and stirred for an additional hour. The resulting solid was filtered off, washed with n-propanol, and dried in a vacuum oven over night to give 195.8 g of tegaserod maleate Form B.

6
EV 320251 655 US

PATENT

https://patentscope.wipo.int/search/en/detail.jsf;jsessionid=0DB6F8E3A17F95B3E74D6454382AF545.wapp1nC?docId=WO2007084761&tab=PCTDESCRIPTION&maxRec=1000

Tegaserod maleate is an aminoguanidine indole 5HT4 agonist for the treatment of irritable bowel syndrome (IBS). Tegaserod maleate has the following structure:

According to the prescribing information (Physician’s Desk Reference, 57th Ed., at Page 2339), tegaserod as the maleate salt is a white to off-white crystalline powder and is slightly soluble in ethanol and very slightly soluble in water. Tegaserod maleate is available commercially as ZELNORM®, in which it is present as crystalline form.
Tegaserod maleate is disclosed in US patent No. 5,510,353 and in its equivalent EP 0 505 322 (example 13), and is reported to have a melting point of 1900C (table 1 example 13).
The literature (Buchheit K.H, et al., J.Med.Chem., 1995, 38, 2331) describes a general method for the condensation of amino guanidines with indole-3-carbadehydes in methanol in the presence of HCl (pH 3-4). The product obtained after solvent evaporation maybe converted to its hydrochloride salt by treatment of the methanolic solution with diethylether/HCl followed by recrystallization from
methanol/diethylether. Tegaserod base prepared according to this general method is characterized solely by a melting point of 155 0C (table 3 compound 5b). Additional Tegaserod maleate characterization was done by 1H and 13C-NMR according to the literature (Jing J. et. al., Guangdong Weiliang Yuansu Kexue, 2002, 9/2, 51).
WO 04/085393 discloses four crystalline forms of tegaserod maleate. The search report for WO 04/085393 further identifies WO 00/10526, and Drugs Fut. 1999, 24(1) which provides an overview for tegaserod maleate. Additional crystalline forms of tegaserod maleate are provided in WO 2005/058819, one of which is characterized by an X-ray Diffraction pattern having peaks at 15.7, 16.9, 17.2, 24.1, 24.6 and 25.2±0.2 two theta (designated as Form B in that PCT publication).
The solid state physical properties of tegaserod salt may be influenced by controlling the conditions under which tegaserod salt is obtained in solid Form. Solid state physical properties include, for example, the flowability of the milled solid. Flowability affects the ease with which the material is handled during processing into a pharmaceutical product. When particles of the powdered compound do not flow past each other easily, a formulation specialist must take that fact into account in developing a tablet or capsule formulation, which may necessitate the use of glidants such as colloidal silicon dioxide, talc, starch or tribasic calcium phosphate.
Another important solid state property of a pharmaceutical compound is its rate of dissolution in aqueous fluid. The rate of dissolution of an active ingredient in a patient’s stomach fluid may have therapeutic consequences since it imposes an upper limit on the rate at which an orally- administered active ingredient may reach the patient’s bloodstream. The rate of dissolution is also a consideration in
formulating syrups, elixirs and other liquid medicaments. The solid state Form of a compound may also affect its behavior on compaction and its storage stability.
These practical physical characteristics are influenced by the conformation and orientation of molecules in the unit cell, which defines a particular polymorphic Form of a substance. The polymorphic form may give rise to thermal behavior different from that of the amorphous material or another polymorphic Form. Thermal behavior is measured in the laboratory by such techniques as capillary melting point, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) and may be used to distinguish some polymorphic forms from others. A particular polymorphic Form may also give rise to distinct spectroscopic properties that may be detectable by powder X-ray crystallography, solid state C NMR spectrometry and infrared spectrometry.
The discovery of new polymorphic forms of a pharmaceutically useful compound provides a new opportunity to improve the performance characteristics of a pharmaceutical product. It enlarges the repertoire of materials that a formulation scientist has available for designing, for example, a pharmaceutical dosage form of a drug with a targeted release profile or other desired characteristic.
The polymorphic forms may further help in purification of tegaserod, particularly if they possess high crystallinity. In the event of metastability, a metastable polymorphic form may be used to prepare a more stable polymorph.
Hence, discovery of new polymorphic forms and new processes help in advancing a formulation scientist in preparation of tegaserod as an active pharmaceutical ingredient in a formulation.
The present invention provides an additional polymorphic form of a maleate salt of tegaserod.

Example 1 : Preparation of sesqui-tefiaserod maleate Foπn H2 through tegaserod base

To a mixture of AGPΗI (112.7 g) in 283 mL of water was added 5-MICHO (45 g) followed by NaOH (52.8 g, 47%) and stirred at room temperature. After three hours, 522 mL of ethyl acetate were added and the mixture stirred for an additional four hours. After phase separation at 400C the organic phase was washed with water (3 x 218 ml), and filtrated under vacuum. The resulting solution was heated to 60 0C and a solution of maleic acid (14.4 g) in 45 mL water was dropped during half hour, and the reaction mixture stirred at the same temperature for an additional two hours. The mixture was cooled to 100C during one hour, kept under stirring at the same temperature for 12 hrs and then filtered under vacuum. The wet product was washed twice with 65 ml of ethyl acetate and dried in a vacuum oven at 45°C for 16 hours to give 85% of the product.

Example 2: Preparation of sesqui-tegaserod maleate Form H2
45 gr MICHO were added to a 1 L reactor at RT. A solution of 112.7 gr of AGP HI and 283 ml water was added to the reactor. 52.8 gr of NaOH 47% were added to the mixture while stirring. The mixture was heated to 400C and stirred for 12 hrs. 522 ml of Ethyl Acetate were added and the mixture was stirred for 4 hrs.
After phase separation at 400C the organic phase was washed with water (3 x 218 ml), and filtrated under vacuum.
The mixture was heated to 600C and a mixture o 14.4 gr of Maleic Acid in 45 ml water was dropped during 5 min.
The mixture was stirred at 600C for 2 hrs.
The mixture was cooled to 100C during 1 hour, stirred at 100C for 13 hrs and then filtered under vacuum. The wet product was washed twice with 65 ml of n-Propanol. The wet product was dried in a vacuum oven at 45°C.
Yield: 71.2%

Example 3: Preparation of Tegaserod maleate Form B from Sesqui-tegaserod maleate Form H2
6.9 g of maleic acid were added to a slurry of Sesqui-Tegaserod maleate Form H2 (41.5 g) in 208 ml n-propanol at room temperature. The mixture was stirred for 5 hours at the same temperature, filtered and washed with n-propanol. After drying on vacuum oven at 450C for 15 hours the product was analyzed by XRD and found to be Form B (89% yield).

PATENT

https://patents.google.com/patent/WO2005058819A2/en

Figure imgf000010_0001
Figure imgf000011_0001
PATENT

 The formation of hydrazones is catalyzed by both general acids and general bases. General base catalysis of dehydration of the tetrahedral intermediate involves nitrogen deprotonation concerted with elimination of hydroxide ion as shown in the Scheme (Sayer J.M., et al. J. Am. Chem. Soc. 1973, 95, 4277). R fast O I H h° NH2R’ R- -NHR’ R R

Figure imgf000005_0001

In many cases, the equilibrium constant for their formation in aqueous solution is high. The additional stability may be attributed to the participation of the atom adjacent to the nitrogen in delocalized bonding. – + RRC = N – NH2 ~*→- RRC – N = NH2

In order to obtain only the maleic salt, the product when using an acid halide (HA) or other acids has to first be converted into the free base, before the addition of maleic acid (Path a), which results in an additional step to the synthesis. On the other hand, the reaction of the present invention in the presence of organic or inorganic base results in the formation of tegaserod free base which gives only the maleate salt after the addition of maleic acid (Path b).

Figure imgf000006_0001
Figure imgf000006_0002

TGS

Figure imgf000006_0003

TGS-MA

 EXAMPLES

HPLC method for detecting the level of the impurities:

Column: Atlantis dcl8(150*4.6),

Mobile phase: A.80% KH2PO4(0.02M) pH=5, 20% acetonitrile(ACN), B.100% ACN. Gradient: time 0= A: 100 B: 0, time 25 min= A:50%, B:50%, time 30 min= A:50%, B:50%, + 10 minutes of equilibration time. Wavelength= 225 nm

Sample concentration: 0.5 mg/mL

Temperature = 25°C

Example 1- Preparation of Tegaserod maleate in water with HCl.

To a mixture of AGP-HI (10.88 g, 0.04 mol) in 25 mL water was added 5-MICHO (3.50 g, 0.02 mol) followed by HCl (37%) until pH 4. The mixture was heated to reflux for 1 hour and then cooled to room temperature. To the resulting slurry was added a solution of NaHCO3 (10%) until pH 9, and heated to 65°C for 20 minutes. After cooling, 100 mL of EtOAc were added, and the organic phase washed with water. A solution of maleic acid (3.48 g, 0.03 mol) in 100 mL EtOAc was added, and the resulting solid was filtered off and washed with EtOAc to give 6.27 g of crude tegaserod maleate with a purity of 99.70% (by HPLC).

Example 2- Preparation of Tegaserod maleate in water with HCl in two steps. a. Preparation of Tegaserod free base.

To a mixture of AGP-HI (163.3 g, 0.6 mol) in 375 mL water was added 5-MICHO (52.5 g, 0.3 mol) followed by HCl (37%) until pH 4. The mixture was heated to reflux for 1 hour and then cooled to room temperature. To the resulting slurry was added a liter of a solution of NaHCO (10%) until pH 9, and heated to 65 °C for one hour. After cooling, 1500 mL of EtOAc were added, and the organic phase washed with water. The remaining organic phase was evaporated to dryness to give tegaserod free base with a purity of 87.42 % (by HPLC). b. Preparation of Tegaserod maleate. To a solution of 2 g of tegaserod free base in MeOH was added a solution of maleic acid (1.28 g, 0.011 mol) in 10 mL MeOH. The resulting solid was filtered off and washed with MeOH to give 1.09 g of crude tegaserod maleate with a purity of 96.81 % (by HPLC).

Example 3- Preparation of Tegaserod maleate in water with TEA.

To a mixture of AGP-HI (10.88 g, 0.04 mol) in 100 mL water was added 5-MICHO (3.50 g, 0.02 mol) followed by TEA (11.0 mL, 0.08 mol) and stirred at room temperature. After one hour, 25 mL of EtOAc was added, and the organic phase washed with water. A solution of maleic acid (3.48 g, 0.03 mol) in 100 mL EtOAc was added, and the resulting solid was filtered off and washed with EtOAc to give 7.92 g of crude tegaserod maleate with a purity of 94 % (by HPLC).

Example 4- Preparation of Tegaserod maleate in water with NaHCO3. To a mixture of AGP-HI (10.88 g, 0.04 mol) in 100 mL water was added 5-MICHO (3.50 g, 0.02 mol) followed by NaHCO3 (6.72 g, 0.08 mol) and heated to reflux for 1 hour. After cooling, 50 mL of EtOAc was added, and the organic phase washed with water. A solution of maleic acid (3.48 g, 0.03mol) in 100 mL EtOAc was added, and the resulting solid was filtered off and washed with EtOAc to give 6.71 g of crude tegaserod maleate with a purity of 98 % (by HPLC) .

Example 5- Preparation of Tegaserod maleate in water with NaHCO3 in two steps. a. Preparation of Tegaserod free base. To a mixture of AGP-HI (32.66 g, 0.12 mol) in 300 mL water was added 5-MICHO (10.51 g, 0.06 mol) followed by NaHCO3(20.16 g, 0.24 mol) and heated to reflux for 1 hour. After cooling, 150 mL of EtOAc was added, and the organic phase washed with water and evaporated to dryness to give 20.4 g of tegaserod free base (91.55%) purity by HPLC). b. Preparation of Tegaserod maleate.

To a solution of 2g of the resulting tegaserod free base in 8 mL MeOH was added a solution of maleic acid (1.28 g, 0.011 mol) in 5 mL MeOH. The resulting solid was filtered off and washed with MeOH to give 2.1 g of crude tegaserod maleate with a purity of 99.63 % (by HPLC).

Example 6- Preparation of Tegaserod maleate in water with Na2CO3. To a mixture of AGP-HI (10.88 g, 0.04 mol) in 100 mL water was added 5-MICHO (3.50 g, 0.02 mol) followed by Na2CO3 (4.24 g, 0.04 mol) and heated to reflux for 1 hour. After cooling, 50 mL of EtOAc was added, and the organic phase washed with water. A solution of maleic acid (3.48 g, 0.03 mol) in 100 mL EtOAc was added, and the resulting solid was filtered off and washed with EtOAc to give 6.48 g of crude tegaserod maleate with a purity of 98.2 % (by HPLC).

Example 7- Preparation of Tegaserod maleate in MeOH with TEA in two steps. a. Preparation of tegaserod free base

To a mixture of AGP-HI (10.88 g, 0.04 mol) in 25 mL MeOH was added 5-MICHO (3.50 g, 0.02 mol) followed by triethylamine (11.0 mL, 0.08 mol). After 1 h at room temperature the mixture was evaporated to dryness, and washed with water, giving 5.79 g of tegaserod free base (86.90 % purity by HPLC). b. Preparation of tegaserod maleate

To a solution of 2 g of the resulting tegaserod free base in 10 mL MeOH was added a solution of maleic acid (1.16 g, 0.01 mol) in water. The resulting solid was filtrated and washed with water to give 1.45 g of crude tegaserod maleate as a white solid (94.60 % purity by HPLC). Crystallization in MeOH improved the purity to 98.94% by HPLC.

Example 8- Preparation of Tegaserod maleate in IPA with K2CO3.

To a mixture of AGP-HI (10.88 g, 0.04 mol) in 25 mL IPA was added 5-MICHO (3.50 g, 0.02 mol) followed by K2CO3 (5.53g, 0.04 mol). After 22 h at room temperature the mixture was washed with brine. The organic phase was treated with a solution of maleic acid (3.48 g, 0.03 mol) in IPA. The resulting solid was filtrated and washed with IPA to give 3.26 g of a white solid (98.97% purity by HPLC).

Example 9- Preparation of Tegaserod maleate in TEA.

To a mixture of AGP-HI (10.88 g, 0.04 mol) and 5-MICHO (3.50 g, 0.02 mol) was added 11 mL of TEA (0.08 mol). After 2 h at room temperature 25 mL of EtOAc were added and the mixture was stirred for 1 h. The resulting solid was filtrated and washed with 25 mL EtOAc, to give 5.7 g of crude.

2 g of the residue was dissolved in 13 mL MeOH and treated with 7 mL of a solution of maleic acid (2.7 g, 0.023 mol) in water. The resulting solid was filtered and washed with water to give 1.5 g of tegaserod maleate (99.26 % purity by HPLC). Crystallization of the solid in MeOH improved the purity to 99.89%) by HPLC.

Example 10- Preparation of Tegaserod maleate in toluene/water with NaHCO3. a. Preparation of tegaserod free base To a mixture of AGP-HI (10.88 g, 0.04 mol) in 200 mL of water/toluene 1:1 was added 5-MICHO (3.50 g, 0.02 mol) followed by NaHCO3 (6.72 g, 0.08 mol) and heated to reflux for 1 hour. After cooling, the solid was filtrated out of the mixture and washed with water. After drying 6.25 g of tegaserod free base was obtained (93.8 % purity by HPLC). b. Preparation of tegaserod maleate To a solution of 3 g of the product in 10 mL MeOH was added a solution of maleic acid (2.31 g, 0.02 mol) in 10 mL water. The resulting solid was filtered off and washed with a solution of MeOH / water to give 2.50 g of crude tegaserod maleate with a purity of 96.6 % (by HPLC).

Example 11- Preparation of Tegaserod maleate in water with NaOH. a. Preparation of tegaserod free base

To a mixture of AGP-HI (10.88 g, 0.04 mol) in 25 mL of water was added 5-MICHO (3.50 g, 0.02 mol) followed by NaOH (2 g, 0.05 mol) and stirred at room temperature. After 3 hours 50 mL of EtOAc was added, and the organic phase washed with water and evaporated to dryness to give 5.6 g of tegaserod free base (98.80% purity by HPLC). b. Preparation of Tegaserod maleate.

To a solution of 1.6 g of tegaserod free base in 15 mL ethyl acetate was added a solution of maleic acid (0.7 g, 0.006 mol) in 5 mL ethyl acetate. The resulting solid was filtered off and washed with ethyl acetate to give 1.65 g of crude tegaserod maleate, with a purity of 99.87 % (by HPLC)

Example 12- Preparation of Tegaserod maleate in water with maleic acid. To a mixture of AGP-HI (10.88 g, 0.04 mol) in 25 mL of water was added 5-MICHO (3.50 g, 0.02 mol) followed by maleic acid (9.3 g, 0.08 mol) and heated to reflux for 1 hour. After cooling, the solid was filtrated out of the mixture and washed with water. After drying 6.92 g of tegaserod maleate crude was obtained (92.4 % purity by HPLC).

Example 13- Preparation of Tegaserod maleate in methanol with maleic acid.

To a mixture of AGP-HI (10.88 g, 0.04 mol) in 25 mL of methanol was added 5- MICHO (3.50 g, 0.02 mol) followed by maleic acid (9.29 g, 0.08 mol) and heated to reflux for 2 hours. After cooling, the solid was filtrated out of the mixture and washed with water. After drying 6.51 g of tegaserod maleate crude was obtained (97.4 % purity by HPLC).

Example 14- Preparation of Tegaserod maleate in water with NaOH in one pot. To a mixture of AGP-HI (10.88 g, 0.04 mol) in 25 mL of water was added 5-MICHO (3.50 g, 0.02 mol) followed by NaOH (2 g, 0.05 mol) and stirred at room temperature. After 4 hours a solution of maleic acid (4.35 g, 0.0375 mol) in 25 mL water was added, and the reaction mixture was stirred overnight. The resulting solid was filtered off and washed with water to give 7.87 g of crude tegaserod maleate (99.16% purity by HPLC).

Example 15- Preparation of Tegaserod maleate in water with NaOH in one pot.

To a mixture of AGP-HI (174.2 g, 0.64 mol) in 362 mL of water was added 5-MICHO (56.2 g, 0.32 mol) followed by NaOH (68.1 g, 47%) and stirred at room temperature. After 4.5 hours, 640 mL of EtOAc was added, and the organic phase washed with water, treated with active carbon and filtrated through hyper flow bed. A solution of maleic acid (44.57 g, 0.38 mol) in 415 mL ethyl acetate / water 97:3 was added, and the reaction mixture was heating to 65 °C and stirrer overnight. The resulting solid was filtered off and washed with water and ethyl acetate to give 121.4 g of crude tegaserod maleate (up to 99.88 % purity by HPLC).

Example 16- Preparation of Tegaserod maleate (from Tegaserod acetate).

To a solution of 8.2 g of tegaserod acetate in 15 mL ethyl acetate heated to 65 °C was added a solution of 3.3 g maleic acid in 5 ml ethyl acetate/water 95:5, and the mixture was stirred at the same temperature for an additional 2 hours, followed by cooling to room temperature and stirring overnight. The resulting solid was filtered off and washed with ethyl acetate/water 95:5. After drying on vacuum oven at 45 °C for 15 hours, 9.18 g of tegaserod maleate were obtained. Tegaserod acetate is prepared according to Examples 19, 20 and 21 of U.S. Appl. No. 11/015,875 and PCT/US04/42822.

Example 19 of U.S. Appl. No. 11/015,875 reads as follows: A slurry of tegaserod base amorphous (6 g) in 50 mL ethyl acetate was stirred at 20- 30 °C for 24 hours. The solid was filtrated and washed with 15 mL of same solvent and dried in a vacuum oven at 40 °C for 16 hours.

Example 20 of U.S. Appl. No. 11/015,875 reads as follows:

A slurry of tegaserod base amorphous (6 g) in 50 mL ethyl acetate was stirred at reflux for 24 hours. The solid was filtrated and washed with 15 mL of same solvent and dried in a vacuum oven at 40 °C for 16 hours.

Example 21 of U.S. Appl. No. 11/015,875 reads as follows:

To a slurry of tegaserod maleate Form A (15 g) in EtOAc (210 mL) and water (210 mL) was added 38.4 g of NaOH 47%. The mixture was stirred overnight and the resulting white solid was isolated by filtration and washed with 100 mL of water. Drying in vacuum oven at 40 °C for 16 hours gives 12.38 g (90% yield). Tegaserod acetate was characterized by H and C-NMR.

Example 17: General method for the preparation of Tegaserod maleate Form A from crystallization.

Tegaserod maleate (1 g) was combined with the appropriate solvent (5 mL), and heated to reflux. Then, additional solvent was added until complete dissolution. After the compound was dissolved, the oil bath was removed and the solution was cooled to room temperature. The solid was filtrated and washed with 5 mL of the same solvent and dried in a vacuum oven at 40 C for 16 hours.

Figure imgf000022_0001
Figure imgf000023_0001

Example 18: Preparation of Tegaserod maleate in water with p-TSOH.

To a mixture of AGP-HI (10.88 g, 0.04 mol) in 25 mL water was added 5-MICHO (3.50 g, 0.02 mol) followed by para-toluenesulfonic acid monohydrate (0.45 g, 0.0024 mol). The mixture was heated to reflux for 4 hour and then cooled to room temperature. The resulting solid was filtered off and washed with water to give 8.32 g of a white solid (84.74 % purity by HPLC).

Example 19: Preparation of Tegaserod maleate from Tegaserod Hemi-maleate hemihydrate

To a solution of 1.72 g of Tegaserod Hemi-maleate hemihydrate in 20 mL ethyl acetate at room temperature was added a solution of 0.134 g maleic acid in 5 ml ethyl acetate/water 95:5, and the mixture was stirred at the same temperature for overnight. The resulting solid was filtered off and washed with ethyl acetate/water 95:5. After drying on vacuum oven at 45°C for 15 hours, 1.68 g of tegaserod maleate were obtained. Tegaserod Hemi-maleate hemihydrate was prepared according to Example 23 of U.S. Appl. No. 11/015,875 and PCT/US04/42822. Example 23 of U.S. Appl. No. 11/015,875 and PCT/US04/42822 reads as follows: A solution of maleic acid (2.32 g in 22 mL ethyl acetate/water 97:3) was added to a mixture of tegaserod base in ethyl acetate, and the reaction mixture was heated to 65 °C and stirrer overnight. The resulting solid was filtered off and washed with water and ethyl acetate. Drying in vacuum oven at 40 °C for 16 hours gives 12.19 g of Tegaserod hemi-maleate hemihydrate. Depending on the base polymorph used a solution or slurry is obtained. When using amorphous tegaserod base, a solution is obtained, while when using any other base polymorph of tegaserod, a slurry is obtained.

PATENT

https://patents.google.com/patent/WO2009063247A1/en

Tegaserod, chemically named 2-[(5-methoxy-liϊ-indol-3-yl)methylene]-IV-pentylhydrazine- carboximidamide, is a selective serotonin 4 (5-HT4) receptor agonist, which can be used to treat gastrointestinal disorders such as heartburn, bloating, postoperative ileus, abdominal pain and discomfort, epigastric pain, nausea, vomiting, regurgitation, intestinal pseudoobstruction, irritable bowel syndrome and gastro-oesophageal reflux. Tegaserod as the maleate salt is marketed for the short-term treatment of irritable bowel syndrome in women whose primary bowel symptom is constipation.

Tegaserod, represented by the formula (I), was first described in US 5 510 353 as well as processes for its preparation. The maleate salt of tegaserod is also disclosed, but interestingly a method of manufacturing tegaserod maleate is not disclosed. The only characterizing data is the melting point which is disclosed as 1900C for the maleate salt and 124°C for the tegaserod base.

Figure imgf000002_0001

WO 2006/116953 describes crystalline forms of the hydrobromide, dihydrogen phosphate and oxalate salts of tegaserod. Also claimed is a process for preparing the hydrochloride, hydrobromide, dihydrogen phosphate, tartrate, citrate, lactate, mesylate, oxalate, succinate, glutarate, adipate, salicylate, sulfate, mandelate, camphor sulfonate and hydrogen sulfate salts of tegaserod from a specific crystalline form of tegaserod base. Another process described is a method of preparing the dihydrogen phosphate, maleate, tartrate, citrate, mesylate, lactate, succinate, oxalate, hydrochloride, salicylate, glutarate, adipate, hydrobromide, sulfate and hydrogen sulfate from a hydrogen halide salt of tegaserod.

There are often major hurdles to overcome before an active pharmaceutical ingredient (API) can be formulated into a composition that can be marketed. For example, the rate of dissolution of an API that has poor aqueous solubility is often problematic. The aqueous solubility is a major influence on the bioavailability of the API such that a poorly soluble API can mean the API is not available to have a pharmaceutical effect on the body. The API can also cause problems during manufacture of a pharmaceutical composition. For example, flowability, compactability and stickiness are all factors affected by the solid state properties of an API.

It has thus always been an aim of the pharmaceutical industry to provide many forms of an API in order to mitigate the problems described above. Different salts, crystalline forms also known as polymorphs, solvates and amorphous forms are all forms of an API that can have different physiochemical and biological characteristics. Indeed, it has been discovered that the tegaserod maleate product on the market, Zelnorm , has been linked to an increase in heart problems in a proportion of individuals. One possible reason is that the maleate moiety reacts with the tegaserod, resulting over time in the production of a toxic impurity.

This impurity could be a contributor to the heart problems seen in some patients.

PATENT

https://patents.google.com/patent/WO2004085393A1/en

Figure 1 is a x-ray powder diffraction pattern of tegaserod maleate Form I. Figure 2 is a x-ray powder diffraction pattern of tegaserod maleate Form II. Figure 3 is a x-ray powder diffraction pattern of tegaserod maleate Form III. Figure 4 is a x-ray powder diffraction pattern of tegaserod maleate Form IV. x-Ray powder diffraction spectrum was measured on a Siemens D5000 x- ray powder diffractometer having a copper-Kα radiation.

The following examples further illustrate the invention.

Example 1 Tegaserod free base (10 gm) is dissolved in acetone (100 ml). Maleic acid (4 gm) is added to the solution and the contents are maintained for 1 hour at 25°C. The separated solid is filtered to give 12.5 gm of tegaserod maleate Form I.

Example 2 Tegaserod maleate Form II (5 gm) and acetone (70 ml) are mixed and refluxed for 1 hour and cooled to 25°C and filtered to give 4.8 gm of tegaserod maleate Form I.

Example 3 Tegaserod maleate Form I (10 gm) is dissolved in methanol (100 ml). Acetonitrile (150 ml) is added to the solution and the contents are heated to reflux. The contents are then cooled to 25°C and maintained for 30 minutes. The separated crystals are collected by filtration to give 9 gm of tegaserod maleate Form II.

Example 4 Tegaserod free base (10 gm) is dissolved in methanol (100 ml) and maleic acid (4 gm) is added to the solution. Then the contents are maintained for 30 minutes at 25°C. Then the separated solid is filtered to give 13 gm of tegaserod maleate Form III.

Example 5

Tegaserod maleate (5 gm) is dissolved in methanol (50 ml) and the solution is maintained at 25°C for 30 minutes. The separated crystals are collected by filtration to give 4.8 gm of tegaserod maleate Form III. Example 6 Tegaserod free base (10 gm) is dissolved in methanol (50 ml), maleic acid (4 gm) is added and the contents are refluxed for 30 minutes and then the resulting solution is cooled to 25°C. Methylene dichloride (200 ml) is added and the contents are maintained for 30 minutes at 25°C. The separated solid is collected by filtration to give 13 gm of tegaserod maleate Form IV.

Example 7 Maleic acid (4 gm) is added to a solution of tegaserod free base (10 gm) in methanol (50 ml). The contents are maintained for 30 minutes at 25°C and isopropyl alcohol (150 ml) is mixed and contents are maintained for 30 minutes at 25°C. The separated solid is collected by filtration to give 12.5 gm of tegaserod maleate Form IV

CLIP

References

  1. ^ “New Data for Zelnorm”. Archived from the original on December 9, 2007. Retrieved March 30, 2007.
  2. ^ “FDA approves first treatment for women with irritable-bowel syndrome”. Archived from the original on February 5, 2007. Retrieved March 30, 2007.
  3. ^ Rossi, S. (2004). Australian Medicines Handbook. Adelaide: Health Communication Network. ISBN 0-9578521-4-2.
  4. ^ Beattie DT, Smith JA, Marquess D, et al. (November 2004). “The 5-HT4 receptor agonist, tegaserod, is a potent 5-HT2B receptor antagonist in vitro and in vivo”Br. J. Pharmacol143 (5): 549–60. doi:10.1038/sj.bjp.0705929PMC 1575425PMID 15466450.
  5. ^ “FDA Announces Discontinued Marketing of GI Drug, Zelnorm, for Safety Reasons”. FDA Press Release. 30 March 2007.
  6. ^ “Zelnorm” (PDF)Novartis. Archived from the original (PDF) on 2007-04-10. Retrieved 2007-03-30.
  7. ^ “Novartis suspends Canadian marketing and sales of Zelnorm in response to request from Health Canada”. Retrieved 2007-03-30.
  8. ^ Loughlin J, Quinn S, Rivero E, Wong J, Huang J, Kralstein J, Earnest DL, Seeger JD (2010). “Tegaserod and the Risk of Cardiovascular Ischemic Events: An Observational Cohort Study”. J Cardiovasc Pharmacol Ther15 (2): 151–7. doi:10.1177/1074248409360357PMID 20200325.
  9. ^ http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm103223.htm
  1. Beattie DT, Smith JA, Marquess D, Vickery RG, Armstrong SR, Pulido-Rios T, McCullough JL, Sandlund C, Richardson C, Mai N, Humphrey PP: The 5-HT4 receptor agonist, tegaserod, is a potent 5-HT2B receptor antagonist in vitro and in vivo. Br J Pharmacol. 2004 Nov;143(5):549-60. Epub 2004 Oct 4. [PubMed:15466450]
  2. Talley NJ: Irritable bowel syndrome. Intern Med J. 2006 Nov;36(11):724-8. doi: 10.1111/j.1445-5994.2006.01217.x. [PubMed:17040359]
  3. Borman RA, Tilford NS, Harmer DW, Day N, Ellis ES, Sheldrick RL, Carey J, Coleman RA, Baxter GS: 5-HT(2B) receptors play a key role in mediating the excitatory effects of 5-HT in human colon in vitro. Br J Pharmacol. 2002 Mar;135(5):1144-51. doi: 10.1038/sj.bjp.0704571. [PubMed:11877320]
  4. Vickers AE, Zollinger M, Dannecker R, Tynes R, Heitz F, Fischer V: In vitro metabolism of tegaserod in human liver and intestine: assessment of drug interactions. Drug Metab Dispos. 2001 Oct;29(10):1269-76. [PubMed:11560869]
  5. FDA approves the reintroduction of Zelnorm™ (tegaserod) for Irritable Bowel Syndrome with Constipation (IBS-C) in women under 65 [Link]
  6. Tegaserod 2019 FDA Label [File]
  7. EMA Refusal Assessment Report for Zelnorm (Tegaserod) [File]
  8. FDA Joint Meeting of the Gastrointestinal Drugs Advisory Committee and Drug Safety and Risk Management Advisory Committee Briefing Document for Zelnorm (tegaserod maleate) [File]

Title
ANDRES: “Labelling of HTF919…” J.LABELLED COMP.RADIOPHARM., vol. 42, 1999, pages 1008-1009, XP002354977 *
BUCHHEIT K H ET AL: “THE SEROTONIN 5-HT4 RECEPTOR. 2. STRUCTURE-ACTIVITY STUDIES OF THE INDOLE CARBAZIMIDAMIDE CLASS OF AGONISTS” JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 38, 1995, pages 2331-2338, XP000867864 ISSN: 0022-2623 cited in the application *
GRAUL A ET AL: “TEGASEROD MALEATE” DRUGS OF THE FUTURE, BARCELONA, ES, vol. 24, no. 1, 1999, pages 38-44, XP000874672 ISSN: 0377-8282 *
LALEZARI ET AL.: “Selective synthesis of …” J. HETEROCYCL. CHEM., vol. 8, 1971, pages 689-691, XP002354978 *
WAN ET AL.: “Improved synthesis of tegaserod maleate” CHINESE J. MED. CHEM., vol. 13, no. 1, 2003, pages 40-41, XP009057178 *
WO2004085393A1 *2003-03-252004-10-07Hetero Drugs LimitedNovel crystalline forms of tegaserod maleate
WO2006116953A1 *2005-05-022006-11-09Zentiva, A.S.A method for the preparation of tegaserod and slected salts thereof
WO2007084761A1 *2006-01-182007-07-26Teva Pharmaceutical Industries Ltd.Maleate salt of tegaserod and crystalline forms thereof
WO2006096802A1 *2005-03-082006-09-14Teva Pharmaceutical Industries Ltd.Amorphous tegaserod maleate
WO2007084761A1 *2006-01-182007-07-26Teva Pharmaceutical Industries Ltd.Maleate salt of tegaserod and crystalline forms thereof
WO2007120924A1 *2006-04-172007-10-25Teva Pharmaceutical Industries Ltd.Preparation of tegaserod maleate free of iodide
WO2007126889A1 *2006-03-272007-11-08Teva Pharmaceutical Industries Ltd.Preparation of tegaserod acetate
WO2007146717A3 *2006-06-122008-03-27Joginder S BajwaProcess for making salts of n-hydroxy-3-[4-[[[2-(2-methyl-1h-indol-3-yl)ethyl]amino]methyl]phenyl]-2e-2-propenamide
EP1955998A1 *2007-02-072008-08-13Chemo Ibérica, S.A.New addition salt of N-amino-N’-pentylguanidine, the process for its preparation and use thereof for obtaining tegaserod
WO2010015794A1 *2008-08-072010-02-11Generics [Uk] LimitedNovel polymorphic forms of tegaserod
CL2008000070A1 *2007-01-172008-07-25Lg Life Sciences LtdMaleic acid mono (3 – [({1 – [(2-amino-9 H -purin-9-yl) methyl] cyclopropyl} oxy) methyl] -8,8-dimethyl-3,7-dioxo-2,4 , 6-trioxa-3 lambda 5 -phosphanon-1-yl pivalate; pharmaceutical composition comprising said mono, and use to treat virus h
US5510353A *1991-03-221996-04-23Sandoz Ltd.Certain aminoguanidine compounds, pharmaceutical compositions containing them and their use in treating gastrointestinal motility disorders and disorders associated with cephalic pain
US20060178519A1 *2004-12-232006-08-10Venkataraman SundaramProcess for preparing tegaserod
Family To Family Citations
WO2006116953A1 *2005-05-022006-11-09Zentiva, A.S.A method for the preparation of tegaserod and slected salts thereof
CN100412059C *2006-06-062008-08-20江苏奥赛康药业有限公司Preparation method of tegaserod
Tegaserod
Tegaserod structure.svg
Tegaserod ball-and-stick model.png
Clinical data
Trade names Zelnorm, Zelmac
AHFS/Drugs.com Monograph
Pregnancy
category
  • AU: B3
  • US: B (No risk in non-human studies)
Routes of
administration
Oral
ATC code
Legal status
Legal status
  • US: Usage requires authorization from the FDA
Pharmacokinetic data
Bioavailability 10%
Protein binding 98%
Metabolism Gastric and hepatic
Elimination half-life 11 ± 5 hours
Excretion Fecal and renal
Identifiers
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
Chemical and physical data
Formula C16H23N5O
Molar mass 301.39 g/mol g·mol−1
3D model (JSmol)

References

    • Buchheit, K.-H. et al.: J. Med. Chem. (JMCMAR) 38, 2331 (1995).
    • US 5 510 353 (Novartis; 23.4.1996; GB-prior. 22.3.1991).
    • EP 505 322 (Sandoz; GB-prior. 22.3.1991).
  • Preparation of 5-methoxyindole:

    • Tsuji, Y. et al.: J. Org. Chem. (JOCEAH) 55 (2), 580 (1990).
    • Jones, G.B. et al.: J. Org. Chem. (JOCEAH) 58 (20), 5558 (1993).
    • Kondo, Y. et al.: J. Org. Chem. (JOCEAH) 62 (19), 6507 (1997).
    • JP 3 024 055 (Kawaken Fine Chemicals; 1.2.1991; J-prior. 21.6.1989).

/////////Tegaserod, HTF 919,  HTF-919SDZ HTF 919SDZ-HTF-919, テガセロド  , Sloan Pharma,  Novartis,
CCCCCNC(=N)N\N=C\C1=CNC2=C1C=C(OC)C=C2

Cefamandole, セファマンドール ,цефамандол , سيفاماندول , 头孢孟多 ,

$
0
0

Cefamandole

Cefamandole.svg

ChemSpider 2D Image | Cefamandole | C18H18N6O5S2

Image result for Cefamandole

Cefamandole

セファマンドール

цефамандол [Russian] [INN]
سيفاماندول [Arabic] [INN]
头孢孟多 [Chinese] [INN]
CAS Registry Number: 34444-01-4
CAS Name: (6R,7R)-7-[[(2R)-Hydroxyphenylacetyl]amino]-3-[[(1-methyl-1H-tetrazol-5-yl)thio]methyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid
Additional Names: 7-mandelamido-3-[[(1-methyl-1H-tetrazol-5-yl)thio]methyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid; 7-D-mandelamido-3-[[(1-methyl-1H-tetrazol-5-yl)thio]methyl]-3-cephem-4-carboxylic acid; 7-D-mandelamido-3-(1-methyl-1,2,3,4-tetrazole-5-thiomethyl)-D3-cephem-4-carboxylic acid; CMT
Manufacturers’ Codes: compd 83405
Molecular Formula: C18H18N6O5S2
Molecular Weight: 462.50
Percent Composition: C 46.74%, H 3.92%, N 18.17%, O 17.30%, S 13.87%
Literature References: Broad-spectrum semi-synthetic cephalosporin antibiotic. Prepn: C. W. Ryan, DE 2018600idem, US3641021 (1970, 1972 to Lilly); J. M. Greene, DE 2312997idem, US 3840531 (1973, 1974 to Lilly). Biological properties: W. E. Wick, D. A. Preston, Antimicrob. Agents Chemother. 1, 221 (1972). Antibacterial activity: S. Eykyn et al., ibid. 3, 657 (1973); H. C. Neu, ibid. 6, 177 (1974); A. D. Russell, J. Antimicrob. Chemother. 1, 97 (1975). Pharmacologic studies: B. R. Meyers et al.,Antimicrob. Agents Chemother. 9, 140 (1976); R. S. Griffith et al., ibid. 10, 814 (1976). Comprehensive description: R. H. Bishara, E. C. Rickard, Anal. Profiles Drug Subs. 9, 125-154 (1980).
Derivative Type: Nafate
CAS Registry Number: 42540-40-9
Trademarks: Bergacef (Bergamon); Cedol (Tiber); Cefam (Magis); Cefiran (Poli); Cemado (Francia); Cemandil (SIT); Fado (Errekappa); Kefadol (Lilly); Kefandol (Lilly); Lampomandol (AGIPS); Mandokef (Lilly); Mandol (Lilly); Mandolsan (San Carlo); Neocefal (Metapharma); Pavecef (IBP)
Molecular Formula: C19H17N6NaO6S2
Molecular Weight: 512.49
Percent Composition: C 44.53%, H 3.34%, N 16.40%, Na 4.49%, O 18.73%, S 12.51%
Properties: White, odorless needles, mp 190° (dec). uv max (H2O): 269 nm (e 10800). pKa 2.6-3.0. Sol in water, methanol. Practically insol in ether, chloroform, benzene, cyclohexane.
Melting point: mp 190° (dec)
pKa: pKa 2.6-3.0
Absorption maximum: uv max (H2O): 269 nm (e 10800)
Therap-Cat: Antibacterial.
Keywords: Antibacterial (Antibiotics); ?Lactams; Cephalosporins.
  • Use:antibiotic
  • Chemical name:[6R-[6α,7β(R*)]]-7-[(hydroxyphenylacetyl)amino]-3-[[(1-methyl-1H-tetrazol-5-yl)thio]methyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid
  • Formula:C18H18N6O5S2
  • MW:462.51 g/mol
  • CAS-RN:34444-01-4
  • InChI Key:OLVCFLKTBJRLHI-AXAPSJFSSA-N
  • InChI:InChI=1S/C18H18N6O5S2/c1-23-18(20-21-22-23)31-8-10-7-30-16-11(15(27)24(16)12(10)17(28)29)19-14(26)13(25)9-5-3-2-4-6-9/h2-6,11,13,16,25H,7-8H2,1H3,(H,19,26)(H,28,29)/t11-,13-,16-/m1/s1
  • EINECS:252-030-0

Derivatives

Formate monosodium salt (nafate)

  • Formula:C19H17N6NaO6S2
  • MW:512.50 g/mol
  • CAS-RN:42540-40-9
  • EINECS:255-877-4
  • LD50:3915 mg/kg (M, i.v.);
    2562 mg/kg (R, i.v.)

Cefamandole (INN, also known as cephamandole) is a second-generation broad-spectrumcephalosporinantibiotic. The clinically used form of cefamandole is the formateestercefamandole nafate, a prodrug which is administered parenterally. Cefamandole is no longer available in the United States.

The chemical structure of cefamandole, like that of several other cephalosporins, contains an N-methylthiotetrazole (NMTT or 1-MTT) side chain. As the antibiotic is broken down in the body, it releases free NMTT, which can cause hypoprothrombinemia (likely due to inhibition of the enzymevitamin K epoxide reductase)(vitamin K supplement is recommended during therapy) and a reaction with ethanol similar to that produced by disulfiram (Antabuse), due to inhibition of aldehyde dehydrogenase.

Cefamandole has a broad spectrum of activity and can be used to treat bacterial infections of the skin, bones and joints, urinary tract, and lower respiratory tract. The following represents cefamandole MIC susceptibility data for a few medically significant microorganisms.

  • Escherichia coli: 0.12 – 400 μg/ml
  • Haemophilus influenzae: 0.06 – >16 μg/ml
  • Staphylococcus aureus: 0.1 – 12.5 μg/ml

[1]

CO2 is generated during the normal constitution of cefamandole and ceftazidime, potentially resulting in an explosive-like reaction in syringes.[2]

SYNTHESIS

US 3641021

US 3840531 US 3974153 US 3903278 US 2018600 US 2065621 DE 2018600 DE 2065621 DE 2730579

DE 2312997

Image result for Cefamandole

SYN

The formylation of 7-aminocephalosporanic acid (I) by the usual techniques produces 7-formamidocephalosporanic acid (II), which is then treated with the sodium salt of 1-methyl-1H-tetrazole-5-thiol (III) to yield 7-formamido-3-(1-methyl-1H-tetrazol-5-ylthio)methyl-3-cephem-4-carboxylic acid (IV). The resulting product (IV) is deformylated affording 7-amino-3-(1-methyl-1H-tetrazol-5-ylthio)methyl-3-cephem-4-carboxylic acid (V), which is finally acylated with anhydro-O-carboxymandelic acid (VI) using the usual techniques.

References

  1. ^ http://www.toku-e.com/Assets/MIC/Cefamandole%20sodium%20salt.pdf
  2. ^ Stork CM (2006). “Antibiotics, antifungals, and antivirals”. In Nelson LH, Flomenbaum N, Goldfrank LR, Hoffman RL, Howland MD, Lewin NA. Goldfrank’s toxicologic emergencies. New York: McGraw-Hill. p. 847. ISBN 0-07-143763-0. Retrieved 2009-07-03.
    • US 3 641 021 (Lilly; 8.2.1972; appl. 18.4.1969).
    • DE 2 018 600 (Lilly; appl. 17.4.1970; USA-prior. 18.4.1969).
    • DAS 2 065 621 (Lilly; appl. 17.4.1970; USA-prior. 18.4.1969).
    • US 3 840 531 (Lilly; 8.10.1974; appl. 21.3.1972).
    • US 3 903 278 (Smith Kline Corp.; 2.9.1975; prior. 4.11.1971).
    • DOS 2 730 579 (Pierrel S.p.A.; appl. 6.7.1977; GB-prior. 10.7.1976).
  • preparation and/or purification via the trimethylsilyl-derivatives:

    • DOS 2 711 095 (Lilly; appl. 14.3.1977; USA-prior. 17.3.1976).
  • purification:

    • US 4 115 644 (Lilly; 19.9.1978; appl. 19.9.1978).
    • DOS 2 839 670 (Lilly; appl. 12.9.1978; USA-prior. 19.9.1977).
  • crystalline sodium salt:

    • US 4 054 738 (Lilly; 18.10.1977; appl. 22.12.1975).
    • US 4 168 376 (Lilly; 18.9.1979; appl. 5.6.1978).
  • lithium salt:

    • GB 1 546 757 (Lilly; appl. 10.4.1975; valid from 7.4.1976).
  • O-formyl-derivative:

    • US 3 928 592 (Lilly; 23.12.1975; appl. 21.2.1974).
    • GB 1 493 676 (Lilly; appl. 20.2.1975; USA-prior. 22.2.1974).
    • GB 1 546 898 (Lilly; appl. 7.4.1976; USA-prior. 11.4.1975).
    • DOS 2 506 622 (Lilly; appl. 17.2.1975; USA-prior. 22.2.1974).
  • crystalline sodium salt of O-formylcefamandole:

    • US 4 006 138 (Lilly; 1.2.1977; appl. 11.4.1975).
  • complex of cefamandole sodium with 1,4-dioxane and water:

    • US 3 947 414 (Lilly; 30.3.1976; appl. 23.12.1974).
  • complex of cefamandole sodium with ethyl l-(–)-lactate:

    • US 3 947 415 (Lilly; 30.3.1976; appl. 23.12.1974).
Cefamandole
Cefamandole.svg
Clinical data
Trade names former Mandol
AHFS/Drugs.com Micromedex Detailed Consumer Information
MedlinePlus a601206
Pregnancy
category
Routes of
administration
Intramuscularintravenous
ATC code
Legal status
Legal status
  • UK: POM (Prescription only)
  • US: Discontinued
Pharmacokinetic data
Protein binding 75%
Elimination half-life 48 minutes
Excretion Mostly renal, as unchanged drug
Identifiers
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
ECHA InfoCard 100.047.285 Edit this at Wikidata
Chemical and physical data
Formula C18H18N6O5S2
Molar mass 462.505 g/mol g·mol−1
3D model (JSmol)
/////////////Cefamandole, セファマンドール  ,цефамандол سيفاماندول 头孢孟多 

KETOROLAC

$
0
0

KetorolacKetorolac.svg

Ketorolac

  • Molecular FormulaC15H13NO3
  • Average mass255.269 Da
1H-Pyrrolizine-1-carboxylic acid, 5-benzoyl-2,3-dihydro-
413572 [Beilstein]
5-(Phenylcarbonyl)-2,3-dihydro-1H-pyrrolizine-1-carboxylic acid
5-Benzoyl-2,3-dihydro-1H-pyrrolizine-1-carboxylic acid
5-Benzoyl-2,3-dihydro-1H-pyrrolo[1,2-a]pyrrole-1-carboxylic acid
74103-06-3 [RN]
 Ketorolac
CAS Registry Number: 74103-06-3
CAS Name: 5-Benzoyl-2,3-dihydro-1H-pyrrolizine-1-carboxylic acid
Additional Names: 5-benzoyl-1,2-dihydro-3H-pyrrolo[1,2-a]pyrrole-1-carboxylic acid
Manufacturers’ Codes: RS-37619
Molecular Formula: C15H13NO3
Molecular Weight: 255.27
Percent Composition: C 70.58%, H 5.13%, N 5.49%, O 18.80%
Literature References: Prostaglandin biosynthesis inhibitor. Prepn and separation of isomers: BE 856681; J. M. Muchowski, A. F. Kluge, US 4089969 (both 1978 to Syntex). Alternate processes: J. M. Muchowski, R. Greenhouse, US 4347186 (1982 to Syntex); F. Franco et al., J. Org. Chem. 47, 1682 (1982); J. B. Doherty, US 4496741 (1985 to Merck & Co.). Absolute configuration: A. Guzman et al., J. Med. Chem. 29, 589 (1986). Structure-activity relationships: J. M. Muchowski et al., ibid. 28, 1037 (1985). Pharmacology and analgesic, anti-inflammatory profile of ketorolac and its tromethamine salt: W. H. Rooks et al., Agents Actions12, 684 (1982); eidem, Drugs Exp. Clin. Res. 11, 479 (1985). Clinical comparison with acetaminophen in post-operative pain: H. J. McQuay et al., Clin. Pharmacol. Ther. 39, 89 (1986).
Properties: Crystals from ethyl acetate + ether, mp 160-161°. uv max in methanol: 245, 312 nm (e 7080, 17400). pKa 3.49 ±0.02. LD50 orally in mice: ~200 mg/kg (Rooks).
Melting point: mp 160-161°
pKa: pKa 3.49 ±0.02
Absorption maximum: uv max in methanol: 245, 312 nm (e 7080, 17400)
Toxicity data: LD50 orally in mice: ~200 mg/kg (Rooks)
Derivative Type: (±)-Form tromethamine salt
CAS Registry Number: 74103-07-4
Trademarks: Acular (Allergan); Dolac (Syntex); Lixidol (Farmitalia); Tarasyn (Syntex); Toradol (Syntex); Toratex (Syntex)
Molecular Formula: C19H24N2O6
Molecular Weight: 376.40
Percent Composition: C 60.63%, H 6.43%, N 7.44%, O 25.50%
Derivative Type: (+)-Form
Properties: Crystals from hexane + ethyl acetate, mp 174° (Guzman); also reported as mp 154-156° (Muchowski, Kluge). [a]D+173° (c = 1 in methanol).
Melting point: mp 174° (Guzman); mp 154-156° (Muchowski, Kluge)
Optical Rotation: [a]D +173° (c = 1 in methanol)
Derivative Type: (-)-Form
Properties: Crystals from hexane + ethyl acetate, mp 169-170° (Guzman); also reported as mp 153-155° (Muchowski, Kluge). [a]D-176° (c = 1 in methanol).
Melting point: mp 169-170° (Guzman); mp 153-155° (Muchowski, Kluge)
Optical Rotation: [a]D -176° (c = 1 in methanol)
Therap-Cat: Analgesic; anti-inflammatory.
Keywords: Analgesic (Non-Narcotic); Anti-inflammatory (Nonsteroidal); Arylcarboxylic Acids.

Ketorolac, sold under the brand name Toradol among others, is a nonsteroidal anti-inflammatory drug (NSAID) used to treat pain.[1]Specifically it is recommended for moderate to severe pain.[2] Recommended duration of treatment is less than six days.[1] It is used by mouth, by injection into a vein or muscle, and as eye drops.[1][2] Effects begin within an hour and last for up to eight hours.[1]

Common side effects include sleepiness, dizziness, abdominal pain, swelling, and nausea.[1] Serious side effects may include stomach bleedingkidney failureheart attacksbronchospasmheart failure, and anaphylaxis.[1] Use is not recommended during the last part of pregnancy or during breastfeeding.[1] Ketorolac works by blocking cyclooxygenase 1 and 2 (COX1 and COX2) thereby decreasing prostaglandins.[1][3]

Ketorolac was patented in 1976 and approved for medical use in 1989.[4][1] It is avaliable as a generic medication.[2] In the United Kingdom it costs the NHS less than a £ per injectable dose as of 2019.[2] In the United States the wholesale cost of this amount is about 1.50 USD.[5] In 2016 it was the 296th most prescribed medication in the United States with more than a million prescriptions.[6]

Medical uses

Ketorolac is used for short-term management of moderate to severe pain.[7]It is usually not prescribed for longer than five days.[8][9][10][11] Ketorolac is effective when administered with paracetamol to control pain in neonates because it does not depress respiration as do opioids.[12] Ketorolac is also an adjuvant to opioid medications and improves pain relief. It is also used to treat dysmenorrhea.[11] Ketorolac is used to treat idiopathic pericarditis, where it reduces inflammation.[13]

Ketorolac is used for short-term pain control not lasting longer than five days, and can be administered orally, by intramuscular injection, intravenously, and by nasal spray.[8] Ketorolac is initially administered by intramuscular injection or intravenously.[7] Oral therapy is only used as a continuation from the intramuscular or intravenous starting point.[8][12]

Ketorolac is used during eye surgery help with pain.[14] Ketorolac is effective in treating ocular itching.[15] The ketorolac ophthalmic formulation is associated with a decreased development of macular edema after cataract surgery and is more effective alone rather than as an opioid/ketorolac combination treatment.[16][17] Ketorolac has also been used to manage pain from corneal abrasions.[18]

During treatment with ketorolac, clinicians monitor for the manifestation of adverse effects and side effects. Lab tests, such as liver function tests, bleeding time, BUNserum creatinine and electrolyte levels are often used and help to identify potential complications.[8][9]

Contraindications

Ketorolac is contraindicated in those with hypersensitivity, allergies to the medication, cross-sensitivity to other NSAIDs, prior to surgery, history of peptic ulcer disease, gastrointestinal bleeding, alcohol intolerance, renal impairment, cerebrovascular bleeding, nasal polypsangioedema, and asthma.[8][9] Recommendations exist for cautious use of ketorolac in those who have experienced cardiovascular disease, myocardial infarction, stroke, heart failurecoagulation disorders, renal impairment, and hepatic impairment.[8][9]

Adverse effects

Though uncommon, potentially fatal adverse effects are strokemyocardial infarctionGI bleedingStevens-Johnson Syndrometoxic epidermal necrolysis and anaphylaxis. A less serious and more common (>10%) side effect is drowsiness. Infrequent (<1%) side effects are paresthesia, prolonged bleeding timeinjection site pain, purpurasweatingabnormal thinking, increased production of tearsedemapallordry mouthabnormal tasteurinary frequencyincreased liver enzymesitching and others. Ketorolac can cause premature constriction of the ductus arteriosis in an infant during the third trimester of pregnancy.[8][9] Platelet function is decreased related to the use of ketorolac.[19]

The practice of restricting treatment with ketorolac is due to its potential to cause kidney damage.[20]

Interactions

Ketorolac can interact with other medications. Probenecid can increase the probability of having an adverse reaction or experiencing a side effect when taken with ketorolac. Pentoxifylline can increase the risk of bleeding. When aspirin is taken at the same time as ketorolac, the effectiveness is decreased. Problematic GI effects are additive and become more likely if potassium supplements, aspirin, other NSAIDS, corticosteroids, or alcohol is taken at the same time. The effectiveness of antihypertensives and diuretics can be lowered. The use of ketorolac can increase serum lithium levels to the point of toxicity. Toxicity to methotrexate is more likely if ketorolac is taken at the same time. The risk of bleeding increases with the concurrent medications clopidogrelcefoperazonevalproic acidcefotetaneptifibatidetirofiban, and copidine. Anticoagulants and thrombolytic medications also increase the likelihood of bleeding. Medications used to treat cancer can interact with ketorolac along with radiation therapy. The risk of toxicity to the kidneys increases when ketorolac is taken with cyclosporine.[8][9]

Interactions with ketorolac exist with some herbal supplements. The use of Panax ginsengclovegingerarnicafeverfewdong quaichamomile, and Ginkgo biloba increases the risk of bleeding.[8][9]

Mechanism of action

The primary mechanism of action responsible for ketorolac’s anti-inflammatory, antipyretic and analgesic effects is the inhibition of prostaglandin synthesis by competitive blocking of the enzyme cyclooxygenase (COX). Ketorolac is a non-selective COX inhibitor.[21] Ketorolac has been assessed to be a relatively higher risk NSAID when compared to aceclofenac, celecoxib, and ibuprofen.[13] It is considered a first-generation NSAID.[19]

History

In the US, ketorolac was the only widely available intravenous NSAID for many years; an IV form of paracetemol, which is not an NSAID, became available in Europe in 2009 and then in the US.[12]

The Syntex company, of Palo Alto, California developed the ophthalmic solution Acular around 2006.[citation needed]

In 2007, there were concerns about the high incidence of reported side effects. This led to restriction in its dosage and maximum duration of use. In the UK, treatment was initiated only in a hospital, although this was not designed to exclude its use in prehospital care and mountain rescue settings.[7] Dosing guidelines were published at that time.[22]

Concerns over the high incidence of reported side effects with ketorolac trometamol led to its withdrawal (apart from the ophthalmic formulation) in several countries, while in others its permitted dosage and maximum duration of treatment have been reduced. From 1990 to 1993, 97 reactions with a fatal outcome were reported worldwide.[23]

The eye-drop formulation was approved by the FDA in 1992.[24] An intranasal formulation was approved by the FDA in 2010[25] for short-term management of moderate to moderately severe pain requiring analgesia at the opioid level.

Synthesis

DOI: 10.1021/jo00348a014

Image result for Ketorolac SYNTHESIS

1H-Pyrrolizine-1-carboxylic acid, 2,3-dihydro-5-benzoyl-, (+-)-, could be produced through many synthetic methods.

Following is one of the reaction routes:

Synthesis of Ketorolac

2-Methylthiopyrrole (I) is benzoylated with N,N-dimethylbenzamide (II) to produce 5-benzoyl-2-methylthiopyrrole (III) in the presence of POCl3 in refluxing CH2Cl2, and the yielding product is condensed with spiro[2.5]-5,7-dioxa-6,6-dimethyloctane-4,8-dione (IV) in the presence of NaH in DMF giving compound (V). The oxidation of (V) with m-chloroperbenzoic acid in CH2Cl2affords the sulfone (VI), which is submitted to methanolysis with methanol and HCl giving 1-(3,3-dimethoxycarbonylpropyl)-2-methanesulfonyl-5-benzoylpyrrole (VII). The cyclization of (VII) with NaH in DMF yields dimethyl 5-benzoyl-1,2-dihydro-3H-pyrrolo[1,2-a]pyrrole-1,1-dicarboxylate (VIII), which is finally hydrolyzed and decarboxylated with KOH in refluxing methanol.Compound (III) can be oxidized with m-chloroperbenzoic acid as before giving 2-methanesulfonyl-5-benzoylpyrrole (IX), which is then condensed with spiro compound (IV) as before to afford compound (VI), already obtained.

SYN

DE 2731678; ES 460706; ES 470214; FR 2358406; FR 2375234; GB 1554075

The condensation of dimethylacetone-1,3-dicarboxylate (X) with ethanolamine (XI) yields methyl 3-(methoxycarbonylmethyl)-3-(2-hydroxyethylamino)acrylate (XII), which is cyclized with bromoacetaldehyde diethylacetal (XIII) affording methyl 1-(2-hydroxyethyl)-3-methoxycarbonylpyrrol-2-acetate (XIV). Acylation of (XIV) with methanesulfonyl chloride (XV) and triethylamine in CH2Cl2 yields the corresponding mesylate (XVI), which by treatment with methyl iodide in refluxing acetonitrile is converted into methyl 1-(2-iodoethyl)-3-methoxycarbonylpyrrole-2-acetate (XVII). The cyclization of (XVII) with NaH in DMF yields dimethyl 1,2-dihydro-3H-pyrrolo[1,2-a]pyrrole-1,7-dicarboxylate (XVIII), which is hydrolyzed with KOH in refluxing methanol – water to the corresponding diacid (XIX). Partial esterification of (XIX) with isopropanol and HCl gives isopropyl 1,2-dihydro-3H-7-carboxypyrrolo[1,2-a]pyrrole-1-carboxylate (XX), which is decarboxylated by heating at 270 C affording isopropyl 1,2-dihydro-3H-pyrrolo[1,2-a]pyrrole-1-carboxylate (XXI). Benzoylation of (XXI) with N,N-dimethylbenzamide (XXII) and POCl3 in refluxing CH2Cl2 yields isopropyl 5-benzoyl-1,2-dihydro-3H-pyrrolo[1,2-a]pyrrole-1-carboxylate (XXIII), which is finally hydrolyzed with K2CO3 or NaOH in methanol – water.

SYN2

The benzoylation of 2-methylthiopyrrole (I) with N,N-dimethylbenzamide (II) by means of POCl3 in refluxing CH2Cl2 gives 5-benzoyl-2-methylthiopyrrole (III), which is condensed with spiro[2.5]-5,7-dioxa-6,6-dimethyloctane-4,8-dione (IV) by means of NaH in DMF yielding compound (V). The oxidation of (V) with m-chloroperbenzoic acid in CH2Cl2 affords the sulfone (VI), which is submitted to methanolysis with methanol and HCl giving 1-(3,3-dimethoxycarbonylpropyl)-2-methanesulfonyl-5-benzoylpyrrole (VII). The cyclization of (VII) with NaH in DMF yields dimethyl 5-benzoyl-1,2-dihydro-3H-pyrrolo[1,2-a]pyrrole-1,1-dicarboxylate (VIII), which is finally hydrolyzed and decarboxylated with KOH in refluxing methanol. Compound (III) can be oxidized with m-chloroperbenzoic acid as before giving 2-methanesulfonyl-5-benzoylpyrrole (IX), which is then condensed with spiro compound (IV) as before to afford compound (VI), already obtained.

References

  1. Jump up to:a b c d e f g h i “Ketorolac Tromethamine Monograph for Professionals”Drugs.com. American Society of Health-System Pharmacists. Retrieved 13 April 2019.
  2. Jump up to:a b c d British national formulary : BNF 76 (76 ed.). Pharmaceutical Press. 2018. pp. 1144, 1302–1303. ISBN 9780857113382.
  3. ^ “DailyMed – ketorolac tromethamine tablet, film coated”dailymed.nlm.nih.gov. Retrieved 14 April 2019.
  4. ^ Fischer, Jnos; Ganellin, C. Robin (2006). Analogue-based Drug Discovery. John Wiley & Sons. p. 521. ISBN 9783527607495.
  5. ^ “NADAC as of 2019-02-27”Centers for Medicare and Medicaid Services. Retrieved 3 March 2019.
  6. ^ “The Top 300 of 2019”clincalc.com. Retrieved 22 December 2018.
  7. Jump up to:a b c Mallinson, Tom (2017). “A review of ketorolac as a prehospital analgesic”Journal of Paramedic Practice9 (12): 522–526. doi:10.12968/jpar.2017.9.12.522. Retrieved 2 June 2018.
  8. Jump up to:a b c d e f g h i Vallerand, April H. (2017). Davis’s Drug Guide for Nurses. Philadelphia: F.A. Davis Company. p. 730. ISBN 9780803657052.
  9. Jump up to:a b c d e f g Physician’s Desk Reference 2017. Montvale, New Jersey: PDR, LLC. 2017. pp. S–474–5. ISBN 9781563638381.
  10. ^ “Ketorolac-tromethamine”The American Society of Health-System Pharmacists. Retrieved 3 April 2011.
  11. Jump up to:a b Henry, p. 291.
  12. Jump up to:a b c Martin, Lizabeth D; Jimenez, Nathalia; Lynn, Anne M (2017). “A review of perioperative anesthesia and analgesia for infants: updates and trends to watch”F1000Research6: 120. doi:10.12688/f1000research.10272.1ISSN 2046-1402PMC 5302152PMID 28232869.
  13. Jump up to:a b Schwier, Nicholas; Tran, Nicole (2016). “Non-Steroidal Anti-Inflammatory Drugs and Aspirin Therapy for the Treatment of Acute and Recurrent Idiopathic Pericarditis”Pharmaceuticals9 (2): 17. doi:10.3390/ph9020017ISSN 1424-8247PMC 4932535PMID 27023565.
  14. ^ Saenz-de-Viteri, Manuel; Gonzalez-Salinas, Roberto; Guarnieri, Adriano; Guiaro-Navarro, María Concepción (2016). “Patient considerations in cataract surgery – the role of combined therapy using phenylephrine and ketorolac”Patient Preference and Adherence10: 1795–1801. doi:10.2147/PPA.S90468ISSN 1177-889XPMC 5029911PMID 27695298.
  15. ^ Karch, Amy (2017). Focus on nursing pharmacology. Philadelphia: Wolters Kluwer. p. 272. ISBN 9781496318213.
  16. ^ Lim, Blanche X; Lim, Chris HL; Lim, Dawn K; Evans, Jennifer R; Bunce, Catey; Wormald, Richard; Wormald, Richard (2016). “Prophylactic non-steroidal anti-inflammatory drugs for the prevention of macular oedema after cataract surgery”Cochrane Database Syst Rev11: CD006683. doi:10.1002/14651858.CD006683.pub3PMID 27801522.
  17. ^ Sivaprasad, Sobha; Bunce, Catey; Crosby-Nwaobi, Roxanne; Sivaprasad, Sobha (2012). “Non-steroidal anti-inflammatory agents for treating cystoid macular oedema following cataract surgery”. Cochrane Database Syst Rev (2): CD004239. doi:10.1002/14651858.CD004239.pub3PMID 22336801.
  18. ^ Wakai A, Lawrenson JG, Lawrenson AL, Wang Y, Brown MD, Quirke M, Ghandour O, McCormick R, Walsh CD, Amayem A, Lang E, Harrison N (2017). “Topical non-steroidal anti-inflammatory drugs for analgesia in traumatic corneal abrasions”. Cochrane Database Syst Rev5: CD009781. doi:10.1002/14651858.CD009781.pub2PMID 28516471.
  19. Jump up to:a b Henry, p. 279.
  20. ^ Henry, p. 280.
  21. ^ Lee, I. O.; Seo, Y. (2008). “The Effects of Intrathecal Cyclooxygenase-1, Cyclooxygenase-2, or Nonselective Inhibitors on Pain Behavior and Spinal Fos-Like Immunoreactivity”. Anesthesia & Analgesia106 (3): 972–977, table 977 contents. doi:10.1213/ane.0b013e318163f602PMID 18292448.
  22. ^ MHRA Drug Safety Update October 2007, Volume 1, Issue 3, pp 3-4.
  23. ^ Committee on the Safety of Medicines, Medicines Control Agency: Ketorolac: new restrictions on dose and duration of treatment. Current Problems in Pharmacovigilance:June 1993; Volume 19 (pages 5-8).
  24. ^ “Ketorolac ophthalmic medical facts from”. Drugs.com. Retrieved 2013-10-06.
  25. ^ “Sprix Information from”. Drugs.com. Retrieved 2013-10-06.

Bibliography

External links

Ketorolac
Ketorolac.svg
Ketorolac ball-and-stick.png
Clinical data
Trade names Toradol, Acular, Sprix, others
Synonyms Ketorolac tromethamine
AHFS/Drugs.com Monograph
MedlinePlus a693001
License data
Pregnancy
category
  • AU: C
  • US: C (Risk not ruled out)
Routes of
administration
By mouth, IMIV, eye drops
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability 100% (All routes)
Metabolism Liver
Elimination half-life 3.5 h to 9.2 h, young adults;
4.7 h to 8.6 h, elderly (mean age 72)
Excretion Kidney: 91.4% (mean)
Biliary: 6.1% (mean)
Identifiers
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
PDB ligand
CompTox Dashboard (EPA)
ECHA InfoCard 100.110.314 Edit this at Wikidata
Chemical and physical data
Formula C15H13NO3
Molar mass 255.27 g/mol g·mol−1
3D model (JSmol)
Chirality Racemic mixture

//////////Ketorolac,

Etosalamide, этосаламид , إيتوسالاميد , 依托柳胺 ,

$
0
0

img

Image result for Etosalamide

Etosalamide

ethosalamide

Cas 15302-15-5
Chemical Formula: C11H15NO3
Molecular Weight: 209.245

o-(2-Ethoxyethoxy)benzamide

1585
1PU994YJUH
этосаламид [Russian] [INN]
إيتوسالاميد [Arabic] [INN]
依托柳胺 [Chinese] [INN]

Etosalamide, also known as Ethosalamide, is an antipyretic and analgesics agent

SYN

str1

OR

str1

CAS:592-55-2, 2-Bromoethyl ethyl ether

Cas, 611-20-1, 2-Hydroxybenzonitrile

PATENT

DE 1013643

PATENT

GB 774635

PATENT

US2822391

78 – 79 MP

PAPER

Journal of Chemical and Engineering Data (1962), 7, 265-6

70 – 71.5 MP

PATENT

WO 2004003198

US 20100226943

/////////Etosalamideэтосаламид إيتوسالاميد 依托柳胺 ethosalamide

O=C(N)C1=CC=CC=C1OCCOCC

Viewing all 678 articles
Browse latest View live